Skip to main content
Oak Ridge National Laboratory scientist Tomonori Saito shows a 3D-printed sandcastle at the DOE Manufacturing Demonstration Facility at ORNL. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

Researchers at ORNL designed a novel polymer to bind and strengthen silica sand for binder jet additive manufacturing, a 3D-printing method used by industries for prototyping and part production.

Verónica Melesse Vergara speaks with third and fourth graders at East Side Intermediate School in Brownsville. Credit: ORNL, U.S. Dept. of Energy

Twenty-seven ORNL researchers Zoomed into 11 middle schools across Tennessee during the annual Engineers Week in February. East Tennessee schools throughout Oak Ridge and Roane, Sevier, Blount and Loudon counties participated, with three West Tennessee schools joining in.

self-healing elastomers
Researchers at Oak Ridge National Laboratory developed self-healing elastomers that demonstrated unprecedented adhesion strength and the ability to adhere to many surfaces, which could broaden their potential use
ORNL researchers and energy storage startup Sparkz have developed a cobalt-free cathode material for use in lithium-ion batteries Credit: Ilias Belharouak/Oak Ridge National Laboratory, U.S. Dept. of Energy

Four research teams from the Department of Energy’s Oak Ridge National Laboratory and their technologies have received 2020 R&D 100 Awards.

EERE Assistant Secretary Daniel Simmons, center right, with ORNL’s Xin Sun, EERE Deputy Assistant Secretary Alex Fitzsimmons and ORNL’s Moe Khaleel, helped launch new capabilities to advance connected and automated vehicle technologies at the DOE National Transportation Research Center at ORNL. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

ORNL and Department of Energy officials dedicated the launch of two clean energy research initiatives that focus on the recycling and recovery of advanced manufacturing materials and on connected and

Simulation of short polymer chains

Oak Ridge National Laboratory scientists have discovered a cost-effective way to significantly improve the mechanical performance of common polymer nanocomposite materials.

Researchers at Oak Ridge National Laboratory shed new light on elusive chemical processes at the liquid-liquid interface during solvent extraction of cobalt (dark blue). Credit: Michelle Lehman/ORNL, U.S. Dept. of Energy

Real-time measurements captured by researchers at ORNL provide missing insight into chemical separations to recover cobalt, a critical raw material used to make batteries and magnets for modern technologies.

Recent research involving Oak Ridge National Laboratory’s Spallation Neutron Source demonstrates crystal-like heat conduction in a solid-liquid hybrid, AgCrSe2.

Research by an international team led by Duke University and the Department of Energy’s Oak Ridge National Laboratory scientists could speed the way to safer rechargeable batteries for consumer electronics such as laptops and cellphones.

Batteries - The 3D connection

Oak Ridge National Laboratory researchers have developed a thin film, highly conductive solid-state electrolyte made of a polymer and ceramic-based composite for lithium metal batteries.

Polymer self-assembly at the liquid-liquid interface in real time

OAK RIDGE, Tenn., Feb. 27, 2020 — Researchers at Oak Ridge National Laboratory and the University of Tennessee achieved a rare look at the inner workings of polymer self-assembly at an oil-water interface to advance materials for neuromorphic computing and bio-inspired technologies.