Skip to main content

News

ORNL, in collaboration with Cincinnati, Inc., used the Big Area Additive Manufacturing machine to 3D print a mold made of recycled thermoplastic composite and syntactic foam, demonstrating the potential for multimaterials in large-scale applications. Credit: ORNL/U.S. Dept. of Energy

Oak Ridge National Laboratory researchers, in collaboration with Cincinnati Inc., demonstrated the potential for using multimaterials and recycled composites in large-scale applications by 3D printing a mold that replicated a single facet of a

Heavy-duty vehicles contribute 23% of transportation emissions of greenhouse gases and account for almost one-quarter of the fuel consumed annually in the U.S. Credit: Chris Bair/Unsplash

Through a consortium of Department of Energy national laboratories, ORNL scientists are applying their expertise to provide solutions that enable the commercialization of emission-free hydrogen fuel cell technology for heavy-duty

Urban climate modeling

Researchers at Oak Ridge National Laboratory have identified a statistical relationship between the growth of cities and the spread of paved surfaces like roads and sidewalks. These impervious surfaces impede the flow of water into the ground, affecting the water cycle and, by extension, the climate.

ORNL researchers combined additive manufacturing with conventional compression molding to produce high-performance thermoplastic composites, demonstrating the potential for the use of large-scale multimaterial preforms to create molded composites. Credit: ORNL/U.S. Dept. of Energy

Oak Ridge National Laboratory researchers combined additive manufacturing with conventional compression molding to produce high-performance thermoplastic composites reinforced with short carbon fibers.

Distinguished Inventors

Six scientists at the Department of Energy’s Oak Ridge National Laboratory were named Battelle Distinguished Inventors, in recognition of obtaining 14 or more patents during their careers at the lab.

A Co-Optima research team led by Oak Ridge National Laboratory’s Jim Szybist in collaboration with Argonne, Sandia and the National Renewable Energy Laboratory, created a merit function tool that evaluates six fuel properties and their impact on engine performance, giving the scientific community a guide to quickly evaluate biofuels. Credit: ORNL/U.S. Dept. of Energy

As ORNL’s fuel properties technical lead for the U.S. Department of Energy’s Co-Optimization of Fuel and Engines, or Co-Optima, initiative, Jim Szybist has been on a quest for the past few years to identify the most significant indicators for predicting how a fuel will perform in engines designed for light-duty vehicles such as passenger cars and pickup trucks.

Paul Kent, shown above posing with Summit in April 2018, received the 2020 ORNL Director’s Award for Outstanding Individual Accomplishment in Science and Technology. Credit: ORNL, U.S. Dept. of Energy

The annual Director's Awards recognized four individuals and teams including awards for leadership in quantum simulation development and application on high-performance computing platforms, and revolutionary advancements in the area of microbial

ORNL Sign

Seven ORNL scientists have been named among the 2020 Highly Cited Researchers list, according to Clarivate, a data analytics firm that specializes in scientific and academic research.

EERE Assistant Secretary Daniel Simmons, center right, with ORNL’s Xin Sun, EERE Deputy Assistant Secretary Alex Fitzsimmons and ORNL’s Moe Khaleel, helped launch new capabilities to advance connected and automated vehicle technologies at the DOE National Transportation Research Center at ORNL. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

ORNL and Department of Energy officials dedicated the launch of two clean energy research initiatives that focus on the recycling and recovery of advanced manufacturing materials and on connected and

An interactive visualization shows potential progression of BECCS to address carbon dioxide reduction goals. Credit: ORNL, U.S. Dept. of Energy

The combination of bioenergy with carbon capture and storage could cost-effectively sequester hundreds of millions of metric tons per year of carbon dioxide in the United States, making it a competitive solution for carbon management, according to a new analysis by ORNL scientists.