Skip to main content
The Department of Energy’s Office of Science has selected five Oak Ridge National Laboratory scientists for Early Career Research Program awards.

The Department of Energy’s Office of Science has selected five Oak Ridge National Laboratory scientists for Early Career Research Program awards.

ORNL’s Sergei Kalinin and Rama Vasudevan (foreground) use scanning probe microscopy to study bulk ferroelectricity and surface electrochemistry -- and generate a lot of data. Credit: Jason Richards/ORNL, U.S. Dept. of Energy

At the Department of Energy’s Oak Ridge National Laboratory, scientists use artificial intelligence, or AI, to accelerate the discovery and development of materials for energy and information technologies.

Spin chains in a quantum system undergo a collective twisting motion as the result of quasiparticles clustering together. Demonstrating this KPZ dynamics concept are pairs of neighboring spins, shown in red, pointing upward in contrast to their peers, in blue, which alternate directions. Credit: Michelle Lehman/ORNL, U.S. Dept. of Energy

Using complementary computing calculations and neutron scattering techniques, researchers from the Department of Energy’s Oak Ridge and Lawrence Berkeley national laboratories and the University of California, Berkeley, discovered the existence of an elusive type of spin dynamics in a quantum mechanical system.

Martin Wissink of ORNL’s Buildings and Transportation Science Division applies neutrons and other diagnostic tools at Oak Ridge National Laboratory in pursuit of cleaner, sustainable and more flexible transportation technologies. Credit: Genevieve Martin/ORNL, U.S. Dept of Energy

For a researcher who started out in mechanical engineering with a focus on engine combustion, Martin Wissink has learned a lot about neutrons on the job

ORNL is designing a neutronic research engine to evaluate new materials and designs for advanced vehicles using the facilities at the Spallation Neutron Source at ORNL. Credit: Jill Hemman/ORNL, U.S. Dept of Energy, and  Southwest Research Institute.

In the quest for advanced vehicles with higher energy efficiency and ultra-low emissions, ORNL researchers are accelerating a research engine that gives scientists and engineers an unprecedented view inside the atomic-level workings of combustion engines in real time.

Sarah Cousineau

Two scientists with the Department of Energy’s Oak Ridge National Laboratory have been elected fellows of the American Physical Society.

Substituting deuterium for hydrogen makes methylammonium heavier and slows its swaying so it can interact with vibrations that remove heat, keeping charge carriers hot longer. Credit: Jill Hemman/ORNL, U.S. Dept. of Energy

Led by ORNL and the University of Tennessee, Knoxville, a study of a solar-energy material with a bright future revealed a way to slow phonons, the waves that transport heat.

A selfie from the Curiosity rover as it explores the surface of Mars. Like many spacecraft, Curiosity uses a radioisotope power system to help fuel its mission. Credit: NASA/JPL-Caltech/MSSS

Radioactive isotopes power some of NASA’s best-known spacecraft. But predicting how radiation emitted from these isotopes might affect nearby materials is tricky

This photo shows the interior of the vessel of the General Atomics DIII-D National Fusion Facility in San Diego, where ORNL researchers are testing the suitability of tungsten to armor the inside of a fusion device. Credit: General Atomics

The inside of future nuclear fusion energy reactors will be among the harshest environments ever produced on Earth. What’s strong enough to protect the inside of a fusion reactor from plasma-produced heat fluxes akin to space shuttles reentering Earth’s atmosphere?

Pu-238 pellet drawing

After its long journey to Mars beginning this summer, NASA’s Perseverance rover will be powered across the planet’s surface in part by plutonium produced at the Department of Energy’s Oak Ridge National Laboratory.