Skip to main content
Researchers have shown how an all-solid lithium-based electrolyte material can be used to develop fast charging, long-range batteries for electric vehicles that are also safer than conventional designs. Credit: ORNL, U.S. Dept. of Energy

Currently, the biggest hurdle for electric vehicles, or EVs, is the development of advanced battery technology to extend driving range, safety and reliability.

Paul Langan will oversee ORNL's research directorate focused on biological and environmental systems science. Credit: ORNL, U.S. Dept. of Energy

Paul Langan will join ORNL in the spring as associate laboratory director for the Biological and Environmental Systems Science Directorate.

New manufacturing process produces better, cheaper cathodes for lithium-ion batteries. Credit: Andy Sproles/ORNL, U.S. Dept. of Energy

Researchers at ORNL have developed a new method for producing a key component of lithium-ion batteries. The result is a more affordable battery from a faster, less wasteful process that uses less toxic material.

ORNL postdoctoral researcher Runming Tao, pictured with a coin cell battery, led an effort to discover new anode materials for fast-charging lithium-ion batteries. Credit: ORNL/Genevieve Martin, U.S. Dept. of Energy

Researchers at ORNL and the University of Tennessee, Knoxville, discovered a key material needed for fast-charging lithium-ion batteries. The commercially relevant approach opens a potential pathway to improve charging speeds for electric vehicles.

Three ORNL scientists have been elected fellows of the American Association for the Advancement of Science, or AAAS, the world’s largest general scientific society and publisher of the Science family of journals. Credit: ORNL, U.S. Dept. of Energy

Three ORNL scientists have been elected fellows of the American Association for the Advancement of Science, or AAAS, the world’s largest general scientific society and publisher of the Science family of journals.

ORNL researchers determined lower heat exchange in lithium-ion batteries is caused by the strong non-harmonic forces among ions and weak interaction between layers, providing guidance for high-density battery design. Credit: Tianli Feng/ORNL, U.S. Dept. of Energy

Oak Ridge National Laboratory researchers proved that the heat transport ability of lithium-ion battery cathodes is much lower than previously determined, a finding that could help explain barriers to increasing energy storage capacity and boosting performance.

This simulation of a fusion plasma calculation result shows the interaction of two counter-streaming beams of super-heated gas. Credit: David L. Green/Oak Ridge National Laboratory, U.S. Dept. of Energy

The prospect of simulating a fusion plasma is a step closer to reality thanks to a new computational tool developed by scientists in fusion physics, computer science and mathematics at ORNL.

Background image represents the cobalt oxide structure Goodenough demonstrated could produce four volts of electricity with intercalated lithium ions. This early research led to energy storage and performance advances in myriad electronic applications. Credit: Jill Hemman/Oak Ridge National Laboratory, U.S. Dept. of Energy

Two of the researchers who share the Nobel Prize in Chemistry announced Wednesday—John B. Goodenough of the University of Texas at Austin and M. Stanley Whittingham of Binghamton University in New York—have research ties to ORNL.

quantum mechanics to advance a range of technologies including computing, fiber optics and network communication

Three researchers at Oak Ridge National Laboratory will lead or participate in collaborative research projects aimed at harnessing the power of quantum mechanics to advance a range of technologies including computing, fiber optics and network

Quantum—Widening the net

Scientists at Oak Ridge National Laboratory studying quantum communications have discovered a more practical way to share secret messages among three parties, which could ultimately lead to better cybersecurity for the electric grid