Skip to main content
Researchers used Frontier, the world’s first exascale supercomputer, to simulate a magnesium system of nearly 75,000 atoms and the National Energy Research Computing Center’s Perlmutter supercomputer to simulate a quasicrystal structure, above, in a ytterbium-cadmium alloy. Credit: Vikram Gavini

Researchers used the world’s first exascale supercomputer to run one of the largest simulations of an alloy ever and achieve near-quantum accuracy.

The OpeN-AM experimental platform, installed at the VULCAN instrument at ORNL’s Spallation Neutron Source, features a robotic arm that prints layers of molten metal to create complex shapes. This allows scientists to study 3D printed welds microscopically. Credit: Jill Hemman, ORNL/U.S. Dept. of Energy

Using neutrons to see the additive manufacturing process at the atomic level, scientists have shown that they can measure strain in a material as it evolves and track how atoms move in response to stress.

The image conceptualizes the processing, structure and mechanical behavior of glassy ion conductors for solid state lithium batteries. Credit: Adam Malin/ORNL, U.S. Dept. of Energy

As current courses through a battery, its materials erode over time. Mechanical influences such as stress and strain affect this trajectory, although their impacts on battery efficacy and longevity are not fully understood.

Steven Hamilton, an R&D scientist in the HPC Methods for Nuclear Applications group at ORNL, leads the ExaSMR project. ExaSMR was developed to run on the Oak Ridge Leadership Computing Facility’s exascale-class supercomputer, Frontier. Credit: Genevieve Martin/ORNL, U.S. Dept. of Energy

The Exascale Small Modular Reactor effort, or ExaSMR, is a software stack developed over seven years under the Department of Energy’s Exascale Computing Project to produce the highest-resolution simulations of nuclear reactor systems to date. Now, ExaSMR has been nominated for a 2023 Gordon Bell Prize by the Association for Computing Machinery and is one of six finalists for the annual award, which honors outstanding achievements in high-performance computing from a variety of scientific domains.  

A new nanoscience study led by an ORNL quantum researcher takes a big-picture look at how scientists study materials at the smallest scales. Credit: Getty Images

A new nanoscience study led by a researcher at ORNL takes a big-picture look at how scientists study materials at the smallest scales.

Tristen Mullins. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

Tristen Mullins enjoys the hidden side of computers. As a signals processing engineer for ORNL, she tries to uncover information hidden in components used on the nation’s power grid — information that may be susceptible to cyberattacks.

A new method to control quantum states in a material is shown. The electric field induces polarization switching of the ferroelectric substrate, resulting in different magnetic and topological states. Credit: Mina Yoon, Fernando Reboredo, Jacquelyn DeMink/ORNL, U.S. Dept. of Energy

An advance in a topological insulator material — whose interior behaves like an electrical insulator but whose surface behaves like a conductor — could revolutionize the fields of next-generation electronics and quantum computing, according to scientists at ORNL.

ORNL seismic researcher Chengping Chai placed seismic sensors on the ground at various distances from an ORNL nuclear reactor to learn whether they could detect its operating state. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

Like most scientists, Chengping Chai is not content with the surface of things: He wants to probe beyond to learn what’s really going on. But in his case, he is literally building a map of the world beneath, using seismic and acoustic data that reveal when and where the earth moves.

ORNL’s Debangshu Mukherjee was named an npj Computational Materials “Reviewer of the Year.”

ORNL’s Debangshu Mukherjee has been named an npj Computational Materials “Reviewer of the Year.”

Portrait of Craig Blue

Craig Blue, Defense Manufacturing Program Director at the Department of Energy’s Oak Ridge National Laboratory, was recently elected to a two-year term on the Institute for Advanced Composites Manufacturing Innovation Consortium Council, a body of professionals from academia, state governments, and national laboratories that provides strategic direction and oversight to IACMI.