Skip to main content
Yun-Yi Pai works with a closed-cycle dilution refrigerator designed for cryomagnetooptical microscopy at ORNL. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

Five National Quantum Information Science Research Centers are leveraging the behavior of nature at the smallest scales to develop technologies for science’s most complex problems.

Travis Humble. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

Travis Humble has been named director of the Quantum Science Center headquartered at ORNL. The QSC is a multi-institutional partnership that spans industry, academia and government institutions and is tasked with uncovering the full potential of quantum materials, sensors and algorithms.

Magnetic quantum material broadens platform for probing next-gen information technologies

Scientists at ORNL used neutron scattering to determine whether a specific material’s atomic structure could host a novel state of matter called a spiral spin liquid.

Oak Ridge National Laboratory’s Leah Broussard shows a neutron-absorbing "wall" that stops all neutrons but in theory would allow hypothetical mirror neutrons to pass through. Credit: Genevieve Martin/ORNL, U.S. Dept. of Energy

To solve a long-standing puzzle about how long a neutron can “live” outside an atomic nucleus, physicists entertained a wild but testable theory positing the existence of a right-handed version of our left-handed universe.

Scattering-type scanning near-field optical microscopy, a nondestructive technique in which the tip of the probe of a microscope scatters pulses of light to generate a picture of a sample, allowed the team to obtain insights into the composition of plant cell walls. Credit: Ali Passian/ORNL, U.S. Dept. of Energy

To optimize biomaterials for reliable, cost-effective paper production, building construction, and biofuel development, researchers often study the structure of plant cells using techniques such as freezing plant samples or placing them in a vacuum.

A smart approach to microscopy and imaging developed at Oak Ridge National Laboratory could drive discoveries in materials for future technologies. Credit: Adam Malin/ORNL, U.S. Dept. of Energy

Researchers at ORNL are teaching microscopes to drive discoveries with an intuitive algorithm, developed at the lab’s Center for Nanophase Materials Sciences, that could guide breakthroughs in new materials for energy technologies, sensing and computing.

Oak Ridge National Laboratory researchers used an invertible neural network, a type of artificial intelligence that mimics the human brain, to select the most suitable materials for desired properties, such as flexibility or heat resistance, with high chemical accuracy. The study could lead to more customizable materials design for industry.

A study led by researchers at ORNL could help make materials design as customizable as point-and-click.

Exploring the smallest distance scales with particle colliders often requires detailed calculations of the spectra of outgoing particles (smallest filled green circles). Image Credit: Benjamin Nachman, Berkeley Lab

Lawrence Berkeley National Laboratory physicists Christian Bauer, Marat Freytsis and Benjamin Nachman have leveraged an IBM Q quantum computer through the Oak Ridge Leadership Computing Facility’s Quantum Computing User Program to capture part of a

This image illustrates lattice distortion, strain, and ion distribution in metal halide perovskites, which can be induced by external stimuli such as light and heat. Image credit: Stephen Jesse/ORNL

A study by researchers at the ORNL takes a fresh look at what could become the first step toward a new generation of solar batteries.

ORNL’s Joseph Lukens runs experiments in an optics lab. Credit: Jason Richards/ORNL, U.S. Dept. of Energy

Scientists’ increasing mastery of quantum mechanics is heralding a new age of innovation. Technologies that harness the power of nature’s most minute scale show enormous potential across the scientific spectrum