Skip to main content
Researchers used Frontier, the world’s first exascale supercomputer, to simulate a magnesium system of nearly 75,000 atoms and the National Energy Research Computing Center’s Perlmutter supercomputer to simulate a quasicrystal structure, above, in a ytterbium-cadmium alloy. Credit: Vikram Gavini

Researchers used the world’s first exascale supercomputer to run one of the largest simulations of an alloy ever and achieve near-quantum accuracy.

Frontier’s exascale power enables the Energy, Exascale and Earth System Model-Multiscale Modeling Framework — or E3SM-MMF — project to run years’ worth of climate simulations at unprecedented speed and scale. Credit: Mark Taylor/Sandia National Laboratories, U.S. Dept. of Energy

The world’s first exascale supercomputer will help scientists peer into the future of global climate change and open a window into weather patterns that could affect the world a generation from now.

SM2ART team members receive the CAMX Combined Strength Award at the Georgia World Congress Center in Atlanta. Pictured here are, from left, ORNL’s Dan Coughlin, Sana Elyas, Halil Tekinalp, Amber Hubbard, Soydan Ozcan; University of Maine’s Susan MacKay, Angelina Buzzelli, Scott Tomlinson, Wesley Bisson; and ORNL’s Matt Korey and Vlastimil Kunc. Credit: University of Maine

The Hub & Spoke Sustainable Materials & Manufacturing Alliance for Renewable Technologies, or SM2ART, program has been honored with the composites industry’s Combined Strength Award at the Composites and Advanced Materials Expo, or CAMX, 2023 in Atlanta. This distinction goes to the team that applies their knowledge, resources and talent to solve a problem by making the best use of composites materials.

Oak Ridge National Laboratory researchers took a connected and automated vehicle out of the virtual proving ground and onto a public road to determine energy savings when it is operated under predictive control strategies. Credit: ORNL, U.S. Dept. of Energy

ORNL researchers  determined that a connected and automated vehicle, or CAV, traveling on a multilane highway with integrated traffic light timing control can maximize energy efficiency and achieve up to 27% savings.

Sam Hollifield displays a prototype of the Secure Hijack, Intrusion and Exploit Layered Detector, or SHIELD, the device monitoring the cybersecurity of the semi-truck. Credit: Lena Shoemaker/ORNL, U.S. Dept. of Energy

As vehicles gain technological capabilities, car manufacturers are using an increasing number of computers and sensors to improve situational awareness and enhance the driving experience.

Steven Campbell’s technical expertise supports integration of power electronics innovations from ORNL labs to the electrical grid. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

Steven Campbell can often be found deep among tall cases of power electronics, hunkered in his oversized blue lab coat, with 1500 volts of electricity flowing above his head. When interrupted in his laboratory at ORNL, Campbell will usually smile and duck his head.

ORNL’s additive manufacturing compression molding, or AMCM, technology can produce composite-based, lightweight finished parts for airplanes, drones or vehicles in minutes and could acclerate decarbonization for the automobile and aeropsace industries. 

An Oak Ridge National Laboratory-developed advanced manufacturing technology, AMCM, was recently licensed by Orbital Composites and enables the rapid production of composite-based components, which could accelerate the decarbonization of vehicles

Members of the Analytics and AI Methods at Scale group in the National Center for Computational Sciences at ORNL developed the mixed-precision performance benchmarking tool OpenMxP. From left are group leader Feiyi Wang, technical lead Mike Matheson and research scientist Hao Lu. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

As Frontier, the world’s first exascale supercomputer, was being assembled at the Oak Ridge Leadership Computing Facility in 2021, understanding its performance on mixed-precision calculations remained a difficult prospect.

Benefit breakdown, 3D printed vs. wood molds

Oak Ridge National Laboratory researchers have conducted a comprehensive life cycle, cost and carbon emissions analysis on 3D-printed molds for precast concrete and determined the method is economically beneficial compared to conventional wood molds.

A rendering of the CFM RISE program’s open fan architecture. (bottom) A GE visualization of turbulent flow in the tip region of an open fan blade using the Frontier supercomputer at ORNL. Credit: CFM, GE Research (CFM is a 50­–50 joint company between GE and Safran Aircraft Engines)

Outside the high-performance computing, or HPC, community, exascale may seem more like fodder for science fiction than a powerful tool for scientific research. Yet, when seen through the lens of real-world applications, exascale computing goes from ethereal concept to tangible reality with exceptional benefits.