Skip to main content
Oak Ridge National Laboratory researchers quantified human behaviors during the early days of COVID-19, which could be useful for disaster response or city planning. Credit: Nathan Armistead/ORNL, U.S. Dept. of Energy

Researchers at Oak Ridge National Laboratory have empirically quantified the shifts in routine daytime activities, such as getting a morning coffee or takeaway dinner, following safer at home orders during the early days of the COVID-19 pandemic.

Physicist Charles Havener uses the NASA end station at ORNL’s Multicharged Ion Research Facility to simulate the origin of X-ray emissions from space. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

Scientists are using Oak Ridge National Laboratory’s Multicharged Ion Research Facility to simulate the cosmic origin of X-ray emissions resulting when highly charged ions collide with neutral atoms and molecules, such as helium and gaseous hydrogen.

With seismic and acoustic data recorded by remote sensors near ORNL’s High Flux Isotope Reactor, researchers could predict whether the reactor was on or off with 98% accuracy. Credit: Nathan Armistead/ORNL, U.S. Dept. of Energy

An Oak Ridge National Laboratory team developed a novel technique using sensors to monitor seismic and acoustic activity and machine learning to differentiate operational activities at facilities from “noise” in the recorded data.

Oak Ridge National Laboratory researchers built an Earth-to-space communications system to work with private and government partners with the goal of directly connecting data downlinks to high performance computing. Credit: Genevieve Martin/ORNL, U.S. Dept. of Energy

Oak Ridge National Laboratory is debuting a small satellite ground station that uses high-performance computing to support automated detection of changes to Earth’s landscape.

Researchers at Oak Ridge National Laboratory demonstrated center-of-mass scanning transmission electron microscopy to observe lithium along with heavier elements in battery materials at atomic resolution. Credit: Chad Malone/ORNL, U.S. Dept. of Energy

Oak Ridge National Laboratory researchers demonstrated an electron microscopy technique for imaging lithium in energy storage materials, such as lithium ion batteries, at the atomic scale.

Samples of four unique materials hitched a ride to space as part of an effort by ORNL scientists to evaluate how each fares under space conditions. Credit: Zac Ward/ORNL, U.S. Dept. of Energy

To study how space radiation affects materials for spacecraft and satellites, Oak Ridge National Laboratory scientists sent samples to the International Space Station. The results will inform design of radiation-resistant magnetic and electronic systems.

ORNL’s Eva Zarkadoula seeks piezoelectric materials for sensors that can withstand irradiation, which causes cascading collisions that displace atoms and produces defects. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

To advance sensor technologies, Oak Ridge National Laboratory researchers studied piezoelectric materials, which convert mechanical stress into electrical energy, to see how they could handle bombardment with energetic neutrons.

Researchers used an atomic force microscope to test how easily particles of the novel coronavirus cling to certain surfaces, a property known as adhesion energy. Credit: Ali Passian/ORNL, U.S. Dept. of Energy

A study by Department of Energy researchers detailed a potential method to detect the novel coronavirus

The D2U model categorizes user data by capturing behavior in all open programs throughout a user’s day. Credit: Nathan Armistead/ORNL, U.S. Dept. of Energy

Oak Ridge National Laboratory researchers have created a technology that more realistically emulates user activities to improve cyber testbeds and ultimately prevent cyberattacks.

Researchers from ORNL’s Vehicle and Autonomy Research Group created a control strategy for a hybrid electric bus that demonstrated up to 30% energy savings. Credit: University of California, Riverside

Oak Ridge National Laboratory researchers developed and demonstrated algorithm-based controls for a hybrid electric bus that yielded up to 30% energy savings compared with existing controls.