Skip to main content
New research predicts peak groundwater extraction for key basins around the globe by the year 2050. The map indicates groundwater storage trends for Earth’s 37 largest aquifers using data from the NASA Jet Propulsion Laboratory GRACE satellite. Credit: NASA.

Groundwater withdrawals are expected to peak in about one-third of the world’s basins by 2050, potentially triggering significant trade and agriculture shifts, a new analysis finds. 

New system combines human, artificial intelligence to improve experimentation

To capitalize on AI and researcher strengths, scientists developed a human-AI collaboration recommender system for improved experimentation performance. 

: ORNL climate modeling expertise contributed to an AI-backed model that assesses global emissions of ammonia from croplands now and in a warmer future, while identifying mitigation strategies. This map highlights croplands around the world. Credit: U.S. Geological Survey

ORNL climate modeling expertise contributed to a project that assessed global emissions of ammonia from croplands now and in a warmer future, while also identifying solutions tuned to local growing conditions.

This newly manufactured fixed guide vane of a hydropower turbine system was printed at the DOE Manufacturing Demonstration Facility at ORNL. Credit: Genevieve Martin/ORNL, U.S Dept. of Energy

A new report published by ORNL assessed how advanced manufacturing and materials, such as 3D printing and novel component coatings, could offer solutions to modernize the existing fleet and design new approaches to hydropower.

Technology to retrofit nonpowered dams such as the Lake Sequoyah Dam in North Carolina could be tested before deploying to ensure performance and reliability. Credit: Scott DeNeale/ORNL, U.S. Dept. of Energy

Researchers at Oak Ridge National Laboratory have identified a key need for future hydropower innovations – full-scale testing – to better inform developers and operators before making major investments.

Melton Hill Dam

To further the potential benefits of the nation’s hydropower resources, researchers at Oak Ridge National Laboratory have developed and maintain a comprehensive water energy digital platform called HydroSource.

non-powered dam

Although more than 92,000 dams populate the country, the vast majority — about 89,000 — do not generate electricity through hydropower.

Physicist Charles Havener uses the NASA end station at ORNL’s Multicharged Ion Research Facility to simulate the origin of X-ray emissions from space. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

Scientists are using Oak Ridge National Laboratory’s Multicharged Ion Research Facility to simulate the cosmic origin of X-ray emissions resulting when highly charged ions collide with neutral atoms and molecules, such as helium and gaseous hydrogen.

With seismic and acoustic data recorded by remote sensors near ORNL’s High Flux Isotope Reactor, researchers could predict whether the reactor was on or off with 98% accuracy. Credit: Nathan Armistead/ORNL, U.S. Dept. of Energy

An Oak Ridge National Laboratory team developed a novel technique using sensors to monitor seismic and acoustic activity and machine learning to differentiate operational activities at facilities from “noise” in the recorded data.

A large generator is installed at the Meldahl hydropower plant in Kentucky. The energy sector anticipates longer lead times in procuring such large components for increasing construction and modernization of U.S. hydropower plants. Credit: American Municipal Power

A new Department of Energy report produced by Oak Ridge National Laboratory identifies several supply chain must-haves in maintaining the pivotal role hydropower will play in decarbonizing the nation’s grid.