Skip to main content

News

Batteries—Polymers that bind

A team of researchers at Oak Ridge National Laboratory have demonstrated that designed synthetic polymers can serve as a high-performance binding material for next-generation lithium-ion batteries.

Materials—Engineering heat transport

Scientists have discovered a way to alter heat transport in thermoelectric materials, a finding that may ultimately improve energy efficiency as the materials

In this MXene electrode, choosing the appropriate solvent for the electrolyte can increase energy density significantly. This scanning electron microscopy image shows fine features of a film only 5 microns thick—approximately 10 times narrower than a human hair. Credit: Drexel University; image by Tyler Mathis
Scientists at ORNL, Drexel University and their partners have discovered a way to improve the energy density of promising energy-storage materials, conductive two-dimensional ceramics called MXenes.
Researchers analyzed the oxygen structure (highlighted in red) found in a perovskite’s crystal structure at room temperature, 500°C and 900°C using neutron scattering at ORNL’s Spallation Neutron Source. Analyzing how these structures impact solid oxide f

A University of South Carolina research team is investigating the oxygen reduction performance of energy conversion materials called perovskites by using neutron diffraction at Oak Ridge National Laboratory’s Spallation Neutron Source.

ORNL alanine_graphic.jpg

OAK RIDGE, Tenn., Jan. 31, 2019—A new electron microscopy technique that detects the subtle changes in the weight of proteins at the nanoscale—while keeping the sample intact—could open a new pathway for deeper, more comprehensive studies of the basic building blocks of life. 

Supercomputing-Memory_boost1.jpg

Scientists at Oak Ridge National Laboratory and Hypres, a digital superconductor company, have tested a novel cryogenic, or low-temperature, memory cell circuit design that may boost memory storage while using less energy in future exascale and quantum computing applications.

Picture2.png

Oak Ridge National Laboratory scientists studying fuel cells as a potential alternative to internal combustion engines used sophisticated electron microscopy to investigate the benefits of replacing high-cost platinum with a lower cost, carbon-nitrogen-manganese-based catalyst.

B_Hudak_ORNL.jpg

An Oak Ridge National Laboratory-led team used a scanning transmission electron microscope to selectively position single atoms below a crystal’s surface for the first time.

Oak Ridge National Laboratory used neutrons to evaluate the behavior of ions adsorbed on the external surfaces onion-like carbon electrodes and determine the right balance of two liquid salts that yields optimal energy storage potential.

Energy storage could get a boost from new research of tailored liquid salt mixtures, the components of supercapacitors responsible for holding and releasing electrical energy. Oak Ridge National Laboratory’s Naresh Osti and his colleagues used neutrons at the lab’s Spallation Neutron ...

From left, Andrew Lupini and Juan Carlos Idrobo use ORNL’s new monochromated, aberration-corrected scanning transmission electron microscope, a Nion HERMES to take the temperatures of materials at the nanoscale. Image credit: Oak Ridge National Laboratory

A scientific team led by the Department of Energy’s Oak Ridge National Laboratory has found a new way to take the local temperature of a material from an area about a billionth of a meter wide, or approximately 100,000 times thinner than a human hair. This discove...