Skip to main content
ORNL’s particle entanglement machine is a precursor to the device that researchers at the University of Oklahoma are building, which will produce entangled quantum particles for quantum sensing to detect underground pipeline leaks. Credit: ORNL, U.S. Dept. of Energy

To minimize potential damage from underground oil and gas leaks, Oak Ridge National Laboratory is co-developing a quantum sensing system to detect pipeline leaks more quickly.

An algorithm developed and field-tested by ORNL researchers uses machine learning to maintain homeowners’ preferred temperatures year-round while minimizing energy costs. Credit: ORNL, U.S. Dept. of Energy

Oak Ridge National Laboratory researchers designed and field-tested an algorithm that could help homeowners maintain comfortable temperatures year-round while minimizing utility costs.

Spin chains in a quantum system undergo a collective twisting motion as the result of quasiparticles clustering together. Demonstrating this KPZ dynamics concept are pairs of neighboring spins, shown in red, pointing upward in contrast to their peers, in blue, which alternate directions. Credit: Michelle Lehman/ORNL, U.S. Dept. of Energy

Using complementary computing calculations and neutron scattering techniques, researchers from the Department of Energy’s Oak Ridge and Lawrence Berkeley national laboratories and the University of California, Berkeley, discovered the existence of an elusive type of spin dynamics in a quantum mechanical system.

An interactive visualization shows potential progression of BECCS to address carbon dioxide reduction goals. Credit: ORNL, U.S. Dept. of Energy

The combination of bioenergy with carbon capture and storage could cost-effectively sequester hundreds of millions of metric tons per year of carbon dioxide in the United States, making it a competitive solution for carbon management, according to a new analysis by ORNL scientists.

Juergen Rapp

Juergen Rapp, a distinguished R&D staff scientist in ORNL’s Fusion Energy Division in the Nuclear Science and Engineering Directorate, has been named a fellow of the American Nuclear Society

Transformational Challenge Reactor Demonstration items

Researchers at the Department of Energy’s Oak Ridge National Laboratory are refining their design of a 3D-printed nuclear reactor core, scaling up the additive manufacturing process necessary to build it, and developing methods

Nuclear – Finally, a benchmark

In the 1960s, Oak Ridge National Laboratory's four-year Molten Salt Reactor Experiment tested the viability of liquid fuel reactors for commercial power generation. Results from that historic experiment recently became the basis for the first-ever molten salt reactor benchmark.

The agreement builds upon years of collaboration, including a 2016 effort using modeling tools developed at ORNL to predict the first six months of operations of TVA’s Watts Bar Unit 2 nuclear power plant. Credit: Andrew Godfrey/Oak Ridge National Laboratory, U.S. Dept. of Energy

OAK RIDGE, Tenn., Feb. 19, 2020 — The U.S. Department of Energy’s Oak Ridge National Laboratory and the Tennessee Valley Authority have signed a memorandum of understanding to evaluate a new generation of flexible, cost-effective advanced nuclear reactors.

Smart Neighborhood homes

To better determine the potential energy cost savings among connected homes, researchers at Oak Ridge National Laboratory developed a computer simulation to more accurately compare energy use on similar weather days.

Argon pellet injection text

As scientists study approaches to best sustain a fusion reactor, a team led by Oak Ridge National Laboratory investigated injecting shattered argon pellets into a super-hot plasma, when needed, to protect the reactor’s interior wall from high-energy runaway electrons.