Skip to main content
Artificial intelligence is becoming an increasingly valuable tool for ORNL researchers tackling the many mysteries of cancer. Credit: Getty Images.

A team of researchers from ORNL was recognized by the National Cancer Institute in March for their unique contributions in the fight against cancer.

The newest Gaea system provides increased performance for more advanced climate modeling and simulation

Oak Ridge National Laboratory, in partnership with the National Oceanic and Atmospheric Administration, is launching a new supercomputer dedicated to climate science research. The new system is the fifth supercomputer to be installed and run by the National Climate-Computing Research Center at ORNL.

Phil Snyder

When virtually unlimited energy from fusion becomes a reality on Earth, Phil Snyder and his team will have had a hand in making it happen.

ORNL will use its land surface modeling tools to determine Baltimore’s climate risk and analyze green infrastructure improvements that can help mitigate impacts on underserved communities as part of a DOE Urban Integrated Field Laboratory project. Source: Google Earth, accessed Sept. 12, 2022

ORNL researchers are deploying their broad expertise in climate data and modeling to create science-based mitigation strategies for cities stressed by climate change as part of two U.S. Department of Energy Urban Integrated Field Laboratory projects.

Shown here is the structure of the NEMO protein. A team from ORNL conducted extensive molecular dynamics work on Summit by using both quantum mechanics and machine-learning methods to look at the binding affinity of NEMO and 3CLpro in humans and other species and to consider the structural models derived from the sequences of other coronaviruses. Image courtesy Nature Communications, Dan Jacobson/ORNL.

A new paper published in Nature Communications adds further evidence to the bradykinin storm theory of COVID-19’s viral pathogenesis — a theory that was posited two years ago by a team of researchers at the Department of Energy’s Oak Ridge National Laboratory.

ORNL fusion technology scientist Tim Bigelow, right, stands near the control console in ORNL’s  fusion control room with Matt Houde of Quaise Energy. Their partnership aims to tackle technical challenges with the Millimeter Wave Drilling System that Quaise has developed. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy.

Researchers in the geothermal energy industry are joining forces with fusion experts at ORNL to repurpose gyrotron technology, a tool used in fusion. Gyrotrons produce high-powered microwaves to heat up fusion plasmas.

ORNL physicist Libby Johnson demonstrated a new control panel at ORNL’s Bulk Shielding Facility in 1957. Among the first females to operate a nuclear reactor, Johnson blazed trails for women. Credit: ORNL, U.S. Dept. of Energy

Oak Ridge National Laboratory physicist Elizabeth “Libby” Johnson (1921-1996), one of the world’s first nuclear reactor operators, standardized the field of criticality safety with peers from ORNL and Los Alamos National Laboratory.

ORNL’s Bruce Pint, left, and Marie Romedenne review experiment results. Credit: ORNL, U.S. Dept. of Energy

Practical fusion energy is not just a dream at ORNL. Experts in fusion and material science are working together to develop solutions that will make a fusion pilot plant — and ultimately carbon-free, abundant fusion electricity — possible.

Friederike (Rike) Bostelmann is a nuclear data and reactor physics analyst at Oak Ridge National Laboratory working to advance new technology for nuclear power reactors as a clean energy source for electricity generation. Credit: ORNL, Carlos Jones

Friederike (Rike) Bostelmann, who began her career in Germany, chose to come to ORNL to become part of the Lab’s efforts to shape the future of nuclear energy.

A team of fusion scientists and engineers stand in front of ORNL’s Helium Flow Loop device. From back left to front right: Chris Crawford, Fayaz Rasheed, Joy Fan, Michael Morrow, Charles Kessel, Adam Carroll, and Cody Wiggins. Not pictured: Dennis Youchison and Monica Gehrig. Credit: Carlos Jones/ORNL.

To achieve practical energy from fusion, extreme heat from the fusion system “blanket” component must be extracted safely and efficiently. ORNL fusion experts are exploring how tiny 3D-printed obstacles placed inside the narrow pipes of a custom-made cooling system could be a solution for removing heat from the blanket.