Skip to main content
Samarthya Bhagia examines a sample of a thermoplastic composite material additively manufactured using poplar wood and polylactic acid. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

Chemical and environmental engineer Samarthya Bhagia is focused on achieving carbon neutrality and a circular economy by designing new plant-based materials for a range of applications from energy storage devices and sensors to environmentally friendly bioplastics.

Scattering-type scanning near-field optical microscopy, a nondestructive technique in which the tip of the probe of a microscope scatters pulses of light to generate a picture of a sample, allowed the team to obtain insights into the composition of plant cell walls. Credit: Ali Passian/ORNL, U.S. Dept. of Energy

To optimize biomaterials for reliable, cost-effective paper production, building construction, and biofuel development, researchers often study the structure of plant cells using techniques such as freezing plant samples or placing them in a vacuum.

Jennifer Morrell-Falvey leads the Molecular and Cellular Imaging group at ORNL, advancing new insights in several scientific areas, including the interactions between plants and microbes that influence ecosystem health and carbon cycling. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

Jennifer Morrell-Falvey’s interest in visualizing the science behind natural processes was what drew her to ORNL in what she expected to be a short stint some 18 years ago. 

ORNL scientists created a new microbial trait mapping process that improves on classical protoplast fusion techniques to identify the genes that trigger desirable genetic traits like improved biomass processing. Credit: Nathan Armistead/ORNL, U.S. Dept. of Energy. Reprinted with the permission of Oxford University Press, publisher of Nucleic Acids Research

ORNL scientists had a problem mapping the genomes of bacteria to better understand the origins of their physical traits and improve their function for bioenergy production.

This protein drives key processes for sulfide use in many microorganisms that produce methane, including Thermosipho melanesiensis. Researchers used supercomputing and deep learning tools to predict its structure, which has eluded experimental methods such as crystallography.  Credit: Ada Sedova/ORNL, U.S. Dept. of Energy

A team of scientists led by the Department of Energy’s Oak Ridge National Laboratory and the Georgia Institute of Technology is using supercomputing and revolutionary deep learning tools to predict the structures and roles of thousands of proteins with unknown functions.

As part of the Next-Generation Ecosystem Experiments Arctic project, scientists are gathering and incorporating new data about the Alaskan tundra into global models that predict the future of our planet. Credit: ORNL/U.S. Dept. of Energy

Improved data, models and analyses from ORNL scientists and many other researchers in the latest global climate assessment report provide new levels of certainty about what the future holds for the planet 

Researchers studying secondary metabolites in the fungus Aspergillus flavus, pictured, found unique mixes of metabolites corresponding to genetically distinct populations. The finding suggests local environmental conditions play a key role in secondary metabolite production, influencing the discovery of drugs and other useful compounds. Credit: Tomás Allen Rush/ORNL, U.S. Dept. of Energy.

Scientists at ORNL and the University of Wisconsin–Madison have discovered that genetically distinct populations within the same species of fungi can produce unique mixes of secondary metabolites, which are organic compounds with applications in

Belinda Akpa applies her diverse expertise and high-performance computing to accelerate the drug discovery process and increase the chances of success when candidate molecules go to clinical trials. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

Belinda Akpa is a chemical engineer with a talent for tackling big challenges and fostering inclusivity and diversity in the next generation of scientists.

Rich Giannone uses bioanalytical mass spectrometry to examine proteins, the primary driver in biological systems.

Rich Giannone uses bioanalytical mass spectrometry to examine proteins, the primary driver in biological systems.

ATOM logo

The Accelerating Therapeutics for Opportunities in Medicine , or ATOM, consortium today announced the U.S. Department of Energy’s Oak Ridge, Argonne and Brookhaven national laboratories are joining the consortium to further develop ATOM’s artificial intelligence, or AI-driven, drug discovery platform.