Skip to main content
ORNL scientists used new techniques to create long lengths of a composite copper-carbon nanotube material with improved properties for use in electric vehicle traction motors. Credit: Andy Sproles/ORNL, U.S. Dept. of Energy

Scientists at Oak Ridge National Laboratory used new techniques to create a composite that increases the electrical current capacity of copper wires, providing a new material that can be scaled for use in ultra-efficient, power-dense electric vehicle traction motors.

The hybrid inverter developed by ORNL is an intelligent power electronic inverter platform that can connect locally sited energy resources such as solar panels, energy storage and electric vehicles and interact efficiently with the utility power grid. Credit: Carlos Jones, ORNL/U.S. Dept of Energy.

ORNL researchers have developed an intelligent power electronic inverter platform that can connect locally sited energy resources such as solar panels, energy storage and electric vehicles and smoothly interact with the utility power grid.

Computational biophysicist Ada Sedova is using experiments and high-performance computing to explore the properties of biological systems and predict their form and function, including research to accelerate drug discovery for COVID-19. Photo credit: Jason Richards, Oak Ridge National Laboratory, U.S. Dept. of Energy.

Ada Sedova’s journey to Oak Ridge National Laboratory has taken her on the path from pre-med studies in college to an accelerated graduate career in mathematics and biophysics and now to the intersection of computational science and biology

Oak Ridge National Laboratory researchers demonstrated on Feb. 27 a 20-kilowatt, bi-directional wireless charging system on a medium-class hybrid electric delivery truck. Credit: Brittany Cramer/Oak Ridge National Laboratory, U.S. Dept. of Energy

Researchers at the Department of Energy’s Oak Ridge National Laboratory (ORNL) in late February demonstrated a 20-kilowatt bi-directional wireless charging system installed on a UPS medium-duty, plug-in hybrid electric delivery truck.

Examples from the ORNL Overhead Vehicle Dataset, generated with images captured by GRIDSMART cameras. Image: Thomas Karnowski/ORNL

Each year, approximately 6 billion gallons of fuel are wasted as vehicles wait at stop lights or sit in dense traffic with engines idling, according to US Department of Energy estimates.

microscope lens and lithium battery prototype

The formation of lithium dendrites is still a mystery, but materials engineers study the conditions that enable dendrites and how to stop them.

The students analyzed diatom images like this one to compare wild and genetically modified strains of these organisms. Credit: Alison Pawlicki/Oak Ridge National Laboratory, US Department of Energy.

Students often participate in internships and receive formal training in their chosen career fields during college, but some pursue professional development opportunities even earlier.

As part of DOE’s HPC4Mobility initiative ORNL researchers developed machine learning algorithms that can control smart traffic lights at intersections to facilitate the smooth flow of traffic and increase fuel efficiency.

A modern, healthy transportation system is vital to the nation’s economic security and the American standard of living. The U.S. Department of Energy’s Oak Ridge National Laboratory (ORNL) is engaged in a broad portfolio of scientific research for improved mobility

Isabelle Snyder standing in front of screen dislaying national map of US power grids

Isabelle Snyder calls faults as she sees them, whether it’s modeling operations for the nation’s power grid or officiating at the US Open Tennis Championships.

Hong Wang, a senior distinguished researcher at the National Transportation Research Center, uses applied mathematics and modeling to improve transportation systems.

In Hong Wang’s world, nothing is beyond control. Before joining Oak Ridge National Laboratory as a senior distinguished researcher in transportation systems, he spent more than three decades studying the control of complex industrial systems in the United Kingdom.