Skip to main content
ORNL intern Jack Orebaugh holds the drone used in his research to help locate human remains. Credit: Lena Shoemaker/ORNL, U.S. Dept. of Energy

Jack Orebaugh, a forensic anthropology major at the University of Tennessee, Knoxville, has a big heart for families with missing loved ones. When someone disappears in an area of dense vegetation, search and recovery efforts can be difficult, especially when a missing person’s last location is unknown. Recognizing the agony of not knowing what happened to a family or friend, Orebaugh decided to use his internship at the Department of Energy’s Oak Ridge National Laboratory to find better ways to search for lost and deceased people using cameras and drones. 

ORNL’s organocatalyst deconstructs mixed plastics at different temperatures, which facilitates recovering their individual monomers separately, in reusable form. Credit: Jill Hemman/ORNL, U.S. Dept. of Energy

Little of the mixed consumer plastics thrown away or placed in recycle bins actually ends up being recycled. Nearly 90% is buried in landfills or incinerated at commercial facilities that generate greenhouse gases and airborne toxins. Neither outcome is ideal for the environment.

Photo collage with text that reads " A New era of discovery"

ORNL, a bastion of nuclear physics research for the past 80 years, is poised to strengthen its programs and service to the United States over the next decade if national recommendations of the Nuclear Science Advisory Committee, or NSAC, are enacted.

Chathuddasie Amarasinghe explains her research poster, “Using Microfluidic Mother Machine Devices to Study the Correlated Dynamics of Ribosomes and Chromosomes in Escherichia Coli.” Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

Speakers, scientific workshops, speed networking, a student poster showcase and more energized the Annual User Meeting of the Department of Energy’s Center for Nanophase Materials Sciences, or CNMS, Aug. 7-10, near Market Square in downtown Knoxville, Tennessee.

The Fuel Pellet Fueling Laboratory at ORNL is part of a suite of fusion energy R&D capabilities and provides test equipment and related diagnostics for carrying out experiments to develop pellet injectors for plasma fueling applications. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

ORNL will team up with six of eight companies that are advancing designs and research and development for fusion power plants with the mission to achieve a pilot-scale demonstration of fusion within a decade.

Yue Yuan, Weinberg Distinguished Staff Fellow at ORNL, is researching ways to create new materials to help the environment. Credit: Genevieve Martin/ORNL, U.S. Dept. of Energy

Growing up in China, Yue Yuan stood beneath the world’s largest hydroelectric dam, built to harness the world’s third-longest river. Her father brought her to Three Gorges Dam every year as it was being constructed across the Yangtze River so she could witness its progress.

Stephen Dahunsi. Credit: Jason Richards/ORNL, U.S. Dept. of Energy

Stephen Dahunsi’s desire to see more countries safely deploy nuclear energy is personal. Growing up in Nigeria, he routinely witnessed prolonged electricity blackouts as a result of unreliable energy supplies. It’s a problem he hopes future generations won’t have to experience.

A LiDAR survey of a local stream collected from one of ORNL’s drones. Credit: Andrew Duncan/ORNL, U.S. Dept. of Energy

The Autonomous Systems group at ORNL is in high demand as it incorporates remote sensing into projects needing a bird’s-eye perspective.

Larry Allard

Larry Allard, a distinguished research staff member at Oak Ridge National Laboratory, has been named a Fellow of the Microanalysis Society.

Researchers at Oak Ridge National Laboratory designed an adsorbent material to rapidly remove toxic chromium and arsenic simultaneously from water resources. Credit: Adam Malin/ORNL, U.S. Dept. of Energy

Researchers at ORNL are tackling a global water challenge with a unique material designed to target not one, but two toxic, heavy metal pollutants for simultaneous removal.