Skip to main content
red and green sphagnum moss

A type of peat moss has surprised scientists with its climate resilience: Sphagnum divinum is actively speciating in response to hot, dry conditions. 

Madhavi Martin portrait image

Madhavi Martin brings a physicist’s tools and perspective to biological and environmental research at the Department of Energy’s Oak Ridge National Laboratory, supporting advances in bioenergy, soil carbon storage and environmental monitoring, and even helping solve a murder mystery.

Saubhagya Rathore uses his modeling, hydrology and engineering expertise to improve understanding of the nation’s watersheds to better predict the future climate and to guide resilience strategies. Credit: Genevieve Martin/ORNL, U.S. Dept. of Energy

Growing up exploring the parklands of India where Rudyard Kipling drew inspiration for The Jungle Book left Saubhagya Rathore with a deep respect and curiosity about the natural world. He later turned that interest into a career in environmental science and engineering, and today he is working at ORNL to improve our understanding of watersheds for better climate prediction and resilience.

Researchers Melissa Cregger, left, and Xiaohan Yang examine plants in an ORNL greenhouse where biosensors are installed to accelerate plant transformations. Credit: Genevieve Martin/ORNL, U.S. Dept. of Energy.

Nature-based solutions are an effective tool to combat climate change triggered by rising carbon emissions, whether it’s by clearing the skies with bio-based aviation fuels or boosting natural carbon sinks.

Hydrologist Jesus Gomez-Velez brings his expertise in river systems and mathematics to ORNL’s modeling and simulation research to better understand flow and transport processes in the nation’s watersheds. Credit: Genevieve Martin/ORNL, U.S. Dept. of Energy

Hydrologist Jesús “Chucho” Gomez-Velez is in the right place at the right time with the right tools and colleagues to explain how the smallest processes within river corridors can have a tremendous impact on large-scale ecosystems.

Jack Cahill of ORNL’s Biosciences Division is developing new techniques to view and measure the previously unseen to better understand important chemical processes at play in plant-microbe interactions and in human health. In this photo, Cahill is positioning a rhizosphere-on-a-chip platform for imaging by mass spectrometry. Credit: Carlos Jones/ORNL, U.S. Dept of Energy

John “Jack” Cahill is out to illuminate previously unseen processes with new technology, advancing our understanding of how chemicals interact to influence complex systems whether it’s in the human body or in the world beneath our feet.

Shown here is the structure of the NEMO protein. A team from ORNL conducted extensive molecular dynamics work on Summit by using both quantum mechanics and machine-learning methods to look at the binding affinity of NEMO and 3CLpro in humans and other species and to consider the structural models derived from the sequences of other coronaviruses. Image courtesy Nature Communications, Dan Jacobson/ORNL.

A new paper published in Nature Communications adds further evidence to the bradykinin storm theory of COVID-19’s viral pathogenesis — a theory that was posited two years ago by a team of researchers at the Department of Energy’s Oak Ridge National Laboratory.

Scientists at ORNL have created a rhizosphere-on-a-chip research platform, a miniaturized environment to study the ecosystem around poplar tree roots for insights into plant health and soil carbon sequestration. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

Scientists at ORNL have created a miniaturized environment to study the ecosystem around poplar tree roots for insights into plant health and soil carbon sequestration.

Samarthya Bhagia examines a sample of a thermoplastic composite material additively manufactured using poplar wood and polylactic acid. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

Chemical and environmental engineer Samarthya Bhagia is focused on achieving carbon neutrality and a circular economy by designing new plant-based materials for a range of applications from energy storage devices and sensors to environmentally friendly bioplastics.

Scattering-type scanning near-field optical microscopy, a nondestructive technique in which the tip of the probe of a microscope scatters pulses of light to generate a picture of a sample, allowed the team to obtain insights into the composition of plant cell walls. Credit: Ali Passian/ORNL, U.S. Dept. of Energy

To optimize biomaterials for reliable, cost-effective paper production, building construction, and biofuel development, researchers often study the structure of plant cells using techniques such as freezing plant samples or placing them in a vacuum.