Skip to main content
3D printed permanent magnets with increased density were made from an improved mixture of materials, which could lead to longer lasting, better performing magnets for electric motors, sensors and vehicle applications. Credit: Jason Richards/Oak Ridge Nati

Oak Ridge National Laboratory scientists have improved a mixture of materials used to 3D print permanent magnets with increased density, which could yield longer lasting, better performing magnets for electric motors, sensors and vehicle applications. Building on previous research, ...

The electromagnetic isotope separator system operates by vaporizing an element such as ruthenium into the gas phase, converting the molecules into an ion beam, and then channeling the beam through magnets to separate out the different isotopes.

A tiny vial of gray powder produced at the Department of Energy’s Oak Ridge National Laboratory is the backbone of a new experiment to study the intense magnetic fields created in nuclear collisions.

From left, ORNL’s Rick Lowden, Chris Bryan and Jim Kiggans were troubled that target discs of a material needed to produce Mo-99 using an accelerator could deform after irradiation and get stuck in their holder.

“Made in the USA.” That can now be said of the radioactive isotope molybdenum-99 (Mo-99), last made in the United States in the late 1980s. Its short-lived decay product, technetium-99m (Tc-99m), is the most widely used radioisotope in medical diagnostic imaging. Tc-99m is best known ...

Illustration of satellite in front of glowing orange celestial body

A shield assembly that protects an instrument measuring ion and electron fluxes for a NASA mission to touch the Sun was tested in extreme experimental environments at Oak Ridge National Laboratory—and passed with flying colors. Components aboard Parker Solar Probe, which will endure th...

ORNL researchers Todd Toops, Charles Finney, and Melanie DeBusk (left to right) hold an example of a particulate filter used to collect harmful emissions in vehicles.

Researchers are looking to neutrons for new ways to save fuel during the operation of filters that clean the soot, or carbon and ash-based particulate matter, emitted by vehicles. A team of researchers from the Energy and Transportation Science Division at the Department of En...

Oak Ridge National Laboratory researcher Halil Tekinalp combines silanes and polylactic acid to create supertough renewable plastic.

A novel method developed at Oak Ridge National Laboratory creates supertough renewable plastic with improved manufacturability. Working with polylactic acid, a biobased plastic often used in packaging, textiles, biomedical implants and 3D printing, the research team added tiny amo...

California charging EV station map

Officials responsible for anticipating the demand for electric vehicle charging stations could get help through a sophisticated new method developed at Oak Ridge National Laboratory. The method considers electric vehicle volume and the random timing of vehicles arriving at cha...

As hurricanes formed in the Gulf Coast, ORNL activated a computing technique to quickly gather building structure data from Texas’ coastal counties. Credit: Mark Tuttle/Oak Ridge National Laboratory, U.S. Dept. of Energy

Geospatial scientists at Oak Ridge National Laboratory have developed a novel method to quickly gather building structure datasets that support emergency response teams assessing properties damaged by Hurricanes Harvey and Irma. By coupling deep learning with high-performance comp...

ORNL’s Frank Combs and Michael Starr of the U.S. Armed Forces (driver) work in ORNL’s Vehicle Security Laboratory to evaluate a prototype device that can detect network intrusions in all modern vehicles. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

A new Oak Ridge National Laboratory-developed method promises to protect connected and autonomous vehicles from possible network intrusion. Researchers built a prototype plug-in device designed to alert drivers of vehicle cyberattacks. The prototype is coded to learn regular timing...

ORNL’s Xiahan Sang unambiguously resolved the atomic structure of MXene, a 2D material promising for energy storage, catalysis and electronic conductivity. Image credit: Oak Ridge National Laboratory, U.S. Dept. of Energy; photographer Carlos Jones

Researchers have long sought electrically conductive materials for economical energy-storage devices. Two-dimensional (2D) ceramics called MXenes are contenders. Unlike most 2D ceramics, MXenes have inherently good conductivity because they are molecular sheets made from the carbides ...