Skip to main content
 A group of ORNL staff standing in a long corridor with flags hanging from the ceiling

For 25 years, scientists at Oak Ridge National Laboratory have used their broad expertise in human health risk assessment, ecology, radiation protection, toxicology and information management to develop widely used tools and data for the U.S. Environmental Protection Agency as part of the agency’s Superfund program.

Mirko Musa was always fascinated by the power of rivers, specifically how these mighty waterways sculpt landscapes. Now, as a water power researcher, he’s finding ways to harness that power and protect rivers at the same time. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

Mirko Musa spent his childhood zigzagging his bike along the Po River. The Po, Italy’s longest river, cuts through a lush valley of grain and vegetable fields, which look like a green and gold ocean spreading out from the river’s banks. 

Clouds of gray smoke in the lower left are funneled northward from wildfires in Western Canada, reaching the edge of the sea ice covering the Arctic Ocean. A second path of thick smoke is visible at the top center of the image, emanating from wildfires in the boreal areas of Russia’s Far East, in this image captured on July 13, 2023. Credit: NASA MODIS

Wildfires have shaped the environment for millennia, but they are increasing in frequency, range and intensity in response to a hotter climate. The phenomenon is being incorporated into high-resolution simulations of the Earth’s climate by scientists at the Department of Energy’s Oak Ridge National Laboratory, with a mission to better understand and predict environmental change.

Saubhagya Rathore uses his modeling, hydrology and engineering expertise to improve understanding of the nation’s watersheds to better predict the future climate and to guide resilience strategies. Credit: Genevieve Martin/ORNL, U.S. Dept. of Energy

Growing up exploring the parklands of India where Rudyard Kipling drew inspiration for The Jungle Book left Saubhagya Rathore with a deep respect and curiosity about the natural world. He later turned that interest into a career in environmental science and engineering, and today he is working at ORNL to improve our understanding of watersheds for better climate prediction and resilience.

Jerry Parks leads the Molecular Biophysics group at ORNL, leveraging his expertise in computational chemistry and bioinformatics to unlock the inner workings of proteins—molecules that govern cellular structure and function and are essential to life. Credit: Genevieve Martin, ORNL/U.S. Dept. of Energy

When reading the novel Jurassic Park as a teenager, Jerry Parks found the passages about gene sequencing and supercomputers fascinating, but never imagined he might someday pursue such futuristic-sounding science.

ORNL scientists created a new microbial trait mapping process that improves on classical protoplast fusion techniques to identify the genes that trigger desirable genetic traits like improved biomass processing. Credit: Nathan Armistead/ORNL, U.S. Dept. of Energy. Reprinted with the permission of Oxford University Press, publisher of Nucleic Acids Research

ORNL scientists had a problem mapping the genomes of bacteria to better understand the origins of their physical traits and improve their function for bioenergy production.

ORNL’s Marie Kurz examines the many factors affecting the health of streams and watersheds. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

Spanning no less than three disciplines, Marie Kurz’s title — hydrogeochemist — already gives you a sense of the collaborative, interdisciplinary nature of her research at ORNL.

Results show change in annual aridity for the years 2071-2100 compared to 1985-2014. Brown shadings (negative numbers) indicate drier conditions. Black dots indicate statistical significance at the 90% confidence level. Credit: Jiafu Mao/ORNL, U.S. Dept. of Energy

A new analysis from Oak Ridge National Laboratory shows that intensified aridity, or drier atmospheric conditions, is caused by human-driven increases in greenhouse gas emissions. The findings point to an opportunity to address and potentially reverse the trend by reducing emissions.

A new process developed by Oak Ridge National Laboratory leverages deep learning techniques to study cell movements in a simulated environment, guided by simple physics rules similar to video-game play. Credit: MSKCC and UTK

Scientists have developed a novel approach to computationally infer previously undetected behaviors within complex biological environments by analyzing live, time-lapsed images that show the positioning of embryonic cells in C. elegans, or roundworms. Their published methods could be used to reveal hidden biological activity. 

This protein drives key processes for sulfide use in many microorganisms that produce methane, including Thermosipho melanesiensis. Researchers used supercomputing and deep learning tools to predict its structure, which has eluded experimental methods such as crystallography.  Credit: Ada Sedova/ORNL, U.S. Dept. of Energy

A team of scientists led by the Department of Energy’s Oak Ridge National Laboratory and the Georgia Institute of Technology is using supercomputing and revolutionary deep learning tools to predict the structures and roles of thousands of proteins with unknown functions.