Skip to main content
The 2023 Billion-Ton Report identifies feedstocks that could be available to produce biofuels to decarbonize the transportation and industrial sectors while potentially tripling the U.S. bioeconomy. The map indicates a mature market scenario, including emerging resources. Credit: ORNL/U.S. Dept. of Energy

The United States could triple its current bioeconomy by producing more than 1 billion tons per year of plant-based biomass for renewable fuels, while meeting projected demands for food, feed, fiber, conventional forest products and exports, according to the DOE’s latest Billion-Ton Report led by ORNL.

The illustration depicts ocean surface currents simulated by MPAS-Ocean. Credit: Los Alamos National Laboratory, E3SM, U.S. Dept. of Energy

A team from DOE’s Oak Ridge, Los Alamos and Sandia National Laboratories has developed a new solver algorithm that reduces the total run time of the Model for Prediction Across Scales-Ocean, or MPAS-Ocean, E3SM’s ocean circulation model, by 45%. 

ORNL researchers, from left, Yang Liu, Xiaohan Yang and Torik Islam, collaborated on the development of a new capability to insert multiple genes simultaneously for fast, efficient transformation of plants into better bioenergy feedstocks. Credit: Genevieve Martin/ORNL, U.S. Dept. of Energy

In a discovery aimed at accelerating the development of process-advantaged crops for jet biofuels, scientists at ORNL developed a capability to insert multiple genes into plants in a single step.

Radu Custelcean's sustainable chemistry for capturing carbon dioxide from air has been licensed to Holocene. Credit: Genevieve Martin/ORNL, U.S. Dept. of Energy

An innovative and sustainable chemistry developed at ORNL for capturing carbon dioxide has been licensed to Holocene, a Knoxville-based startup focused on designing and building plants that remove carbon dioxide

Computational systems biologists at ORNL worked with the U.S. Department of Veterans Affairs and other institutions to identify 139 locations across the human genome tied to risk factors for varicose veins, marking a first step in the development of new treatments. Credit: Andy Sproles/ORNL, U.S. Dept. of Energy

As part of a multi-institutional research project, scientists at ORNL leveraged their computational systems biology expertise and the largest, most diverse set of health data to date to explore the genetic basis of varicose veins.

Matthew Craig’s research at ORNL is focused on how carbon cycles in and out of soils, a process that can have tremendous impact on the Earth’s climate. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

Matthew Craig grew up eagerly exploring the forest patches and knee-high waterfalls just beyond his backyard in central Illinois’ corn belt. Today, that natural curiosity and the expertise he’s cultivated in biogeochemistry and ecology are focused on how carbon cycles in and out of soils, a process that can have tremendous impact on the Earth’s climate.

Jim Szybist, Propulsion Science section head at ORNL, is applying his years of alternative fuel combustion and thermodynamics research to the challenge of cleaning up the hard-to-decarbonize, heavy-duty mobility sector. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy.

What’s getting Jim Szybist fired up these days? It’s the opportunity to apply his years of alternative fuel combustion and thermodynamics research to the challenge of cleaning up the hard-to-decarbonize, heavy-duty mobility sector — from airplanes to locomotives to ships and massive farm combines.

Dongarra in 2019 with Oak Ridge National Laboratory's Summit supercomputer

A force within the supercomputing community, Jack Dongarra developed software packages that became standard in the industry, allowing high-performance computers to become increasingly more powerful in recent decades.

An international team of researchers used Summit to model spin, charge and pair-density waves in cuprates, a type of copper alloy, to explore the materials’ superconducting properties. The results revealed new insights into the relationships between these dynamics as superconductivity develops. Credit: Jason Smith/ORNL

A study led by researchers at ORNL used the nation’s fastest supercomputer to close in on the answer to a central question of modern physics that could help conduct development of the next generation of energy technologies.

INCITE_narrow_logo

The U.S. Department of Energy’s Office of Science announced allocations of supercomputer access to 51 high-impact computational science projects for 2022 through its Innovative and Novel Computational Impact on Theory and Experiment, or INCITE, program.