Skip to main content
Seven scientists at the Department of Energy’s Oak Ridge National Laboratory have been named Battelle Distinguished Inventors, in recognition of their obtaining 14 or more patents during their careers at the lab. Credit: ORNL, U.S. Dept. of Energy

Seven scientists at the Department of Energy’s Oak Ridge National Laboratory have been named Battelle Distinguished Inventors, in recognition of their obtaining 14 or more patents during their careers at the lab.

Ilias Belharouak, Grace Burke and Phil Snyder represent ORNL’s strengths in battery technology, materials science and fusion energy research.

Three researchers at ORNL have been named ORNL Corporate Fellows in recognition of significant career accomplishments and continued leadership in their scientific fields.

When an electron beam drills holes in heated graphene, single-atom vacancies, shown in purple, diffuse until they join with other vacancies to form stationary structures and chains, shown in blue. Credit: Ondrej Dyck/ORNL, U.S. Dept. of Energy

Oak Ridge National Laboratory researchers serendipitously discovered when they automated the beam of an electron microscope to precisely drill holes in the atomically thin lattice of graphene, the drilled holes closed up.

Field emission scanning electron microscopy reveals the microstructure of the porous activated carbon that can confine hydrogen at the nanoscale. Credit: Joaquin Silvestre-Albero

Neutron scattering techniques were used as part of a study of a novel nanoreactor material that grows crystalline hydrogen clathrates, or HCs, capable of storing hydrogen.

Researchers used quantum Monte Carlo calculations to accurately render the structure and electronic properties of germanium selenide, a semiconducting nanomaterial. Credit: Paul Kent/ORNL, U.S. Dept. of Energy

A multi-lab research team led by ORNL's Paul Kent is developing a computer application called QMCPACK to enable precise and reliable predictions of the fundamental properties of materials critical in energy research.

ORNL’s RapidCure improves lithium-ion electrode production by producing electrodes faster, reducing the energy necessary for manufacturing and eliminating the need for a solvent recycling unit. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

Researchers at the Department of Energy’s Oak Ridge National Laboratory and their technologies have received seven 2022 R&D 100 Awards, plus special recognition for a battery-related green technology product.

Oak Ridge National Laboratory’s Ramesh Bhave partnered with Momentum Technologies to develop a modular, scalable system for recycling scrap permanent magnets in e-waste. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

Researchers at Oak Ridge National Laboratory and Momentum Technologies have piloted an industrial-scale process for recycling valuable materials in the millions of tons of e-waste generated annually in the United States.

Oak Ridge National Laboratory scientists are enhancing the performance of polymer materials for next-generation lithium batteries. Credit: Adam Malin/ORNL, U.S. Dept. of Energy

Researchers at Oak Ridge National Laboratory are using state-of-the-art methods to shed light on chemical separations needed to recover rare-earth elements and secure critical materials for clean energy technologies.

With seismic and acoustic data recorded by remote sensors near ORNL’s High Flux Isotope Reactor, researchers could predict whether the reactor was on or off with 98% accuracy. Credit: Nathan Armistead/ORNL, U.S. Dept. of Energy

An Oak Ridge National Laboratory team developed a novel technique using sensors to monitor seismic and acoustic activity and machine learning to differentiate operational activities at facilities from “noise” in the recorded data.

Neutron computed tomography reveals how water is constrained to travel only along certain strands of a special yarn coated with a water-wicking compound and a biocatalytic enzyme. Credit: Yuxuan Zhang/ORNL, U.S. Dept. of Energy

Textile engineering researchers from North Carolina State University used neutrons at Oak Ridge National Laboratory to identify a special wicking mechanism in a type of cotton yarn that allows the fibers to control the flow of liquid across certain strands.