Skip to main content
Oak Ridge National Laboratory researchers developed a single burner cooking appliance powered by a blend of 50% hydrogen and natural gas, reducing emissions that contribute to the carbon footprint. Credit: ORNL, U.S. Dept. of Energy

A prototype cooking appliance developed by Oak Ridge National Laboratory uses a 50% blend of hydrogen and natural gas, offering an alternative to safely reduce emissions that contribute to the nation’s carbon footprint.

ORNL researchers worked with partners at the Colorado School of Mines and Baylor University to develop a new process optimization and control method for a closed-circuit reverse osmosis desalination system. The work is intended to support fully automated, decentralized water treatment plants. Credit: Andrew Sproles/ORNL, U.S. Dept. of Energy

Oak Ridge National Laboratory scientists worked with the Colorado School of Mines and Baylor University to develop and test control methods for autonomous water treatment plants that use less energy and generate less waste.

Oak Ridge National Laboratory researchers built a prototype natural gas furnace that uses acidic gas reduction technology to remove or trap potentially environmentally harmful emissions. Credit: ORNL, U.S. Dept. of Energy

Oak Ridge National Laboratory researchers have developed a novel solution to reduce the environmental impact of natural gas-condensing furnaces commonly used in U.S. homes.

High voltage power lines carry electricity generated by the Tennessee Valley Authority to ORNL. Credit: Dobie Gillispie/ORNL, U.S. Dept. of Energy

ORNL and the Tennessee Valley Authority, or TVA, are joining forces to advance decarbonization technologies from discovery through deployment through a new memorandum of understanding, or MOU.

Brian Fricke

The American Society of Heating, Refrigeration and Air-Conditioning Engineers, or ASHRAE, selected Oak Ridge National Laboratory’s Brian Fricke as one of 25 members elevated to fellow grade during its 2022 winter conference.

An international team of researchers used Summit to model spin, charge and pair-density waves in cuprates, a type of copper alloy, to explore the materials’ superconducting properties. The results revealed new insights into the relationships between these dynamics as superconductivity develops. Credit: Jason Smith/ORNL

A study led by researchers at ORNL used the nation’s fastest supercomputer to close in on the answer to a central question of modern physics that could help conduct development of the next generation of energy technologies.

 Caption: This computer-generated image of the JET tokamak shows what one would see if its walls were transparent, revealing the plasma inside. Credit: UK Atomic Energy Authority

A new fusion record was announced February 9 in the United Kingdom: At the Joint European Torus, or JET, the team documented the generation of 59 megajoules of sustained fusion energy, more than doubling the

ORNL’s Brenda Pracheil, left, and Kristine Moody collect water samples at Melton Hill Lake using a sophisticated instrument that collects DNA in the water to determine fish species and number of fish in the water, which could prove useful for monitoring hydropower impacts. Credit: Carlos Jones, ORNL/U.S Dept. of Energy

Researchers at Oak Ridge National Laboratory are using a novel approach in determining environmental impacts to aquatic species near hydropower facilities, potentially leading to smarter facility designs that can support electrical grid reliability.

Results show change in annual aridity for the years 2071-2100 compared to 1985-2014. Brown shadings (negative numbers) indicate drier conditions. Black dots indicate statistical significance at the 90% confidence level. Credit: Jiafu Mao/ORNL, U.S. Dept. of Energy

A new analysis from Oak Ridge National Laboratory shows that intensified aridity, or drier atmospheric conditions, is caused by human-driven increases in greenhouse gas emissions. The findings point to an opportunity to address and potentially reverse the trend by reducing emissions.

A new process developed by Oak Ridge National Laboratory leverages deep learning techniques to study cell movements in a simulated environment, guided by simple physics rules similar to video-game play. Credit: MSKCC and UTK

Scientists have developed a novel approach to computationally infer previously undetected behaviors within complex biological environments by analyzing live, time-lapsed images that show the positioning of embryonic cells in C. elegans, or roundworms. Their published methods could be used to reveal hidden biological activity.