Skip to main content
Paul Langan will oversee ORNL's research directorate focused on biological and environmental systems science. Credit: ORNL, U.S. Dept. of Energy

Paul Langan will join ORNL in the spring as associate laboratory director for the Biological and Environmental Systems Science Directorate.

Ilias Belharouak, Grace Burke and Phil Snyder represent ORNL’s strengths in battery technology, materials science and fusion energy research.

Three researchers at ORNL have been named ORNL Corporate Fellows in recognition of significant career accomplishments and continued leadership in their scientific fields.

New manufacturing process produces better, cheaper cathodes for lithium-ion batteries. Credit: Andy Sproles/ORNL, U.S. Dept. of Energy

Researchers at ORNL have developed a new method for producing a key component of lithium-ion batteries. The result is a more affordable battery from a faster, less wasteful process that uses less toxic material.

This diagram demonstrates how a concentrating solar thermal plant could use molten salts to store solar energy that could later be used to generate electricity. Credit: Jaimee Janiga/ORNL, U.S. Dept. of Energy

Oak Ridge National Laboratory scientists recently demonstrated a low-temperature, safe route to purifying molten chloride salts that minimizes their ability to corrode metals. This method could make the salts useful for storing energy generated from the sun’s heat.

ORNL postdoctoral researcher Runming Tao, pictured with a coin cell battery, led an effort to discover new anode materials for fast-charging lithium-ion batteries. Credit: ORNL/Genevieve Martin, U.S. Dept. of Energy

Researchers at ORNL and the University of Tennessee, Knoxville, discovered a key material needed for fast-charging lithium-ion batteries. The commercially relevant approach opens a potential pathway to improve charging speeds for electric vehicles.

ORNL fusion technology scientist Tim Bigelow, right, stands near the control console in ORNL’s  fusion control room with Matt Houde of Quaise Energy. Their partnership aims to tackle technical challenges with the Millimeter Wave Drilling System that Quaise has developed. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy.

Researchers in the geothermal energy industry are joining forces with fusion experts at ORNL to repurpose gyrotron technology, a tool used in fusion. Gyrotrons produce high-powered microwaves to heat up fusion plasmas.

A team of fusion scientists and engineers stand in front of ORNL’s Helium Flow Loop device. From back left to front right: Chris Crawford, Fayaz Rasheed, Joy Fan, Michael Morrow, Charles Kessel, Adam Carroll, and Cody Wiggins. Not pictured: Dennis Youchison and Monica Gehrig. Credit: Carlos Jones/ORNL.

To achieve practical energy from fusion, extreme heat from the fusion system “blanket” component must be extracted safely and efficiently. ORNL fusion experts are exploring how tiny 3D-printed obstacles placed inside the narrow pipes of a custom-made cooling system could be a solution for removing heat from the blanket.

High voltage power lines carry electricity generated by the Tennessee Valley Authority to ORNL. Credit: Dobie Gillispie/ORNL, U.S. Dept. of Energy

ORNL and the Tennessee Valley Authority, or TVA, are joining forces to advance decarbonization technologies from discovery through deployment through a new memorandum of understanding, or MOU.

Three ORNL scientists have been elected fellows of the American Association for the Advancement of Science, or AAAS, the world’s largest general scientific society and publisher of the Science family of journals. Credit: ORNL, U.S. Dept. of Energy

Three ORNL scientists have been elected fellows of the American Association for the Advancement of Science, or AAAS, the world’s largest general scientific society and publisher of the Science family of journals.