Skip to main content
Quantum information scientists at ORNL hope to harness beams of light, or photons, as qubits for quantum networking. Credit: ORNL/Carlos Jones

ORNL’s next major computing achievement could open a new universe of scientific possibilities accelerated by the primal forces at the heart of matter and energy.

Yun-Yi Pai works with a closed-cycle dilution refrigerator designed for cryomagnetooptical microscopy at ORNL. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

Five National Quantum Information Science Research Centers are leveraging the behavior of nature at the smallest scales to develop technologies for science’s most complex problems.

Travis Humble. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

Travis Humble has been named director of the Quantum Science Center headquartered at ORNL. The QSC is a multi-institutional partnership that spans industry, academia and government institutions and is tasked with uncovering the full potential of quantum materials, sensors and algorithms.

Researchers at Oak Ridge National Laboratory designed an adsorbent material to rapidly remove toxic chromium and arsenic simultaneously from water resources. Credit: Adam Malin/ORNL, U.S. Dept. of Energy

Researchers at ORNL are tackling a global water challenge with a unique material designed to target not one, but two toxic, heavy metal pollutants for simultaneous removal.

Oak Ridge National Laboratory researchers used an invertible neural network, a type of artificial intelligence that mimics the human brain, to select the most suitable materials for desired properties, such as flexibility or heat resistance, with high chemical accuracy. The study could lead to more customizable materials design for industry.

A study led by researchers at ORNL could help make materials design as customizable as point-and-click.

Exploring the smallest distance scales with particle colliders often requires detailed calculations of the spectra of outgoing particles (smallest filled green circles). Image Credit: Benjamin Nachman, Berkeley Lab

Lawrence Berkeley National Laboratory physicists Christian Bauer, Marat Freytsis and Benjamin Nachman have leveraged an IBM Q quantum computer through the Oak Ridge Leadership Computing Facility’s Quantum Computing User Program to capture part of a

This image illustrates lattice distortion, strain, and ion distribution in metal halide perovskites, which can be induced by external stimuli such as light and heat. Image credit: Stephen Jesse/ORNL

A study by researchers at the ORNL takes a fresh look at what could become the first step toward a new generation of solar batteries.

QLAN submit - A team from the U.S. Department of Energy’s Oak Ridge National Laboratory, Stanford University and Purdue University developed and demonstrated a novel, fully functional quantum local area network, or QLAN, to enable real-time adjustments to information shared with geographically isolated systems at ORNL using entangled photons passing through optical fiber. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

A rapidly emerging consensus in the scientific community predicts the future will be defined by humanity’s ability to exploit the laws of quantum mechanics.

Using quantum Monte Carlo methods, the researchers simulated bulk VO2. Yellow and turquoise represent changes in electron density between the excited and ground states of a compound composed of oxygen, in red, and vanadium, in blue, which allowed them to evaluate how an oxygen vacancy, in white, can alter the compound’s properties. Credit: Panchapakesan Ganesh/ORNL, U.S. Dept. of Energy

Neuromorphic devices — which emulate the decision-making processes of the human brain — show great promise for solving pressing scientific problems, but building physical systems to realize this potential presents researchers with a significant