Skip to main content
Quantum information scientists at ORNL hope to harness beams of light, or photons, as qubits for quantum networking. Credit: ORNL/Carlos Jones

ORNL’s next major computing achievement could open a new universe of scientific possibilities accelerated by the primal forces at the heart of matter and energy.

Oak Ridge National Laboratory materials scientist Zhili Feng, left, looks on as senior technician Doug Kyle operates a welding robot inside a robotic welding cell. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

The U.S. Departments of Energy and Defense teamed up to create a series of weld filler materials that could dramatically improve high-strength steel repair in vehicles, bridges and pipelines.

Microscopy-generated images showing the path of a fracture and accompanying crystal structure deformation in the CrCoNi alloy at nanometer scale during stress testing at 20 kelvin (-424 F). The fracture is propagating from left to right. Credit: Robert Ritchie/Berkeley Lab

Scientists have measured the highest toughness ever recorded, of any material, while investigating a metallic alloy made of chromium, cobalt and nickel, or CrCoNi.

Philipe Ambrozio Dias. Credit: Genevieve Martin/ORNL, U.S. Dept. of Energy

Having lived on three continents spanning the world’s four hemispheres, Philipe Ambrozio Dias understands the difficulties of moving to a new place.

Materials scientist Denise Antunes da Silva researches ways to reduce concrete’s embodied carbon in the Sustainable Building Materials Laboratory at ORNL, a research space dedicated to studying environmentally friendly building materials. Credit: ORNL, U.S. Dept. of Energy

Materials scientist Denise Antunes da Silva researches ways to reduce concrete’s embodied carbon in the Sustainable Building Materials Laboratory at ORNL, a research space dedicated to studying environmentally friendly building materials. Credit: ORNL, U.S. Dept. of Energy

ORNL’s Tomás Rush explores the secret lives of fungi and plants for insights into the interactions that determine plant health. Credit: Genevieve Martin/ORNL, U.S. Dept. of Energy

Tomás Rush began studying the mysteries of fungi in fifth grade and spent his college intern days tromping through forests, swamps and agricultural lands searching for signs of fungal plant pathogens causing disease on host plants.

A simulation of the planet from the DOE Energy Exascale Earth System Model, one of the large-scale models incorporated in the Earth System Grid Federation led by DOE’s Oak Ridge, Argonne and Lawrence Livermore national laboratories. Credit: LLNL, U.S. Dept. of Energy

The Earth System Grid Federation, a multi-agency initiative that gathers and distributes data for top-tier projections of the Earth’s climate, is preparing a series of upgrades.

ORNL will use its land surface modeling tools to determine Baltimore’s climate risk and analyze green infrastructure improvements that can help mitigate impacts on underserved communities as part of a DOE Urban Integrated Field Laboratory project. Source: Google Earth, accessed Sept. 12, 2022

ORNL researchers are deploying their broad expertise in climate data and modeling to create science-based mitigation strategies for cities stressed by climate change as part of two U.S. Department of Energy Urban Integrated Field Laboratory projects.

Distinguished staff fellow Gang Seob “GS” Jung knew from an early age he wanted to be a scientist. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

Gang Seob “GS” Jung has known from the time he was in middle school that he was interested in science.

Data from different sources are joined on platforms created by ORNL researchers to offer better information for decision makers. Credit: ORNL/Nathan Armistead

When the COVID-19 pandemic stunned the world in 2020, researchers at ORNL wondered how they could extend their support and help