Skip to main content
Transformational Challenge Reactor Demonstration items

Researchers at the Department of Energy’s Oak Ridge National Laboratory are refining their design of a 3D-printed nuclear reactor core, scaling up the additive manufacturing process necessary to build it, and developing methods

Researchers at DOE’s Manufacturing Demonstration Facility at ORNL developed a reusable face mask prototype with injection molding that will enable industry to rapidly manufacture. Credit: Carlos Jones/Oak Ridge National Laboratory, U.S. Dept. of Energy

In the fight against the COVID-19 pandemic, it’s a race against the clock not only to find a vaccine but also to supply healthcare workers with life-saving equipment such as face shields, masks and test kits.

ORNL’s Brian Post

Brian Post, a researcher in large-scale additive manufacturing at ORNL, has been selected as a recipient of the 2020 Outstanding Young Manufacturing Engineer Award by SME. 

Coronavirus graphic

In the race to identify solutions to the COVID-19 pandemic, researchers at the Department of Energy’s Oak Ridge National Laboratory are joining the fight by applying expertise in computational science, advanced manufacturing, data science and neutron science.

Kat Royston

As a teenager, Kat Royston had a lot of questions. Then an advanced-placement class in physics convinced her all the answers were out there.

ORNL scientists are combining their expertise in environmental science, physics, sensors and additive manufacturing to create model fish for use in testing of hydropower turbine designs. The project supports healthy ecosystems and hydropower—the nation’s largest renewable energy resource. Photo credit: Oak Ridge National Laboratory, U.S. Dept. of Energy.

Hydropower developers must consider many factors when it comes time to license a new project or renew an existing one: How can environmental impacts be mitigated, including to fish populations?

Postdoctoral researcher Nischal Kafle positions a component for a portable plasma imaging diagnostic device at ORNL in February. The device, a project for ARPA-E, is built of off-the-shelf parts. Credit: Carlos Jones/ORNL

The techniques Theodore Biewer and his colleagues are using to measure whether plasma has the right conditions to create fusion have been around awhile.

The agreement builds upon years of collaboration, including a 2016 effort using modeling tools developed at ORNL to predict the first six months of operations of TVA’s Watts Bar Unit 2 nuclear power plant. Credit: Andrew Godfrey/Oak Ridge National Laboratory, U.S. Dept. of Energy

OAK RIDGE, Tenn., Feb. 19, 2020 — The U.S. Department of Energy’s Oak Ridge National Laboratory and the Tennessee Valley Authority have signed a memorandum of understanding to evaluate a new generation of flexible, cost-effective advanced nuclear reactors.

This simulation of a fusion plasma calculation result shows the interaction of two counter-streaming beams of super-heated gas. Credit: David L. Green/Oak Ridge National Laboratory, U.S. Dept. of Energy

The prospect of simulating a fusion plasma is a step closer to reality thanks to a new computational tool developed by scientists in fusion physics, computer science and mathematics at ORNL.

Peter Wang

Peter Wang is focused on robotics and automation at the Department of Energy’s Manufacturing Demonstration Facility at ORNL, working on high-profile projects such as the MedUSA, a large-scale hybrid additive manufacturing machine.