Skip to main content
Researchers found that moderate levels of ash — sometimes found as spheres in biomass — do not significantly affect the mechanical properties of biocomposites made up of corn stover, switchgrass and PLA thermoplastic. Credit: Andy Sproles/ORNL, U.S. Dept. of Energy

The presence of minerals called ash in plants makes little difference to the fitness of new naturally derived compound materials designed for additive manufacturing, an Oak Ridge National Laboratory-led team found.

Researchers at ORNL designed a recyclable carbon fiber material to promote low-carbon manufacturing. Credit: Chad Malone/ORNL, U.S. Dept. of Energy

Oak Ridge National Laboratory scientists designed a recyclable polymer for carbon-fiber composites to enable circular manufacturing of parts that boost energy efficiency in automotive, wind power and aerospace applications.

Sophie Voisin, an ORNL software engineer, was part of a team that won a 2014 R&D 100 Award for work on Intelligent Software for a Personalized Modeling of Expert Opinions, Decisions and Errors in Visual Examination Tasks. Credit: Jason Richards/ORNL, U.S. Dept. of Energy

Cameras see the world differently than humans. Resolution, equipment, lighting, distance and atmospheric conditions can impact how a person interprets objects on a photo.

ORNL identity science researcher Nell Barber works on a facial recognition camera. Credit: Genevieve Martin/ORNL, U.S. Dept. of Energy

Though Nell Barber wasn’t sure what her future held after graduating with a bachelor’s degree in psychology, she now uses her interest in human behavior to design systems that leverage machine learning algorithms to identify faces in a crowd.

Logan Sturm, Alvin M. Weinberg Fellow at ORNL, creates a mashup between additive manufacturing and cybersecurity research. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

How an Alvin M. Weinberg Fellow is increasing security for critical infrastructure components

Jim Szybist, Propulsion Science section head at ORNL, is applying his years of alternative fuel combustion and thermodynamics research to the challenge of cleaning up the hard-to-decarbonize, heavy-duty mobility sector. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy.

What’s getting Jim Szybist fired up these days? It’s the opportunity to apply his years of alternative fuel combustion and thermodynamics research to the challenge of cleaning up the hard-to-decarbonize, heavy-duty mobility sector — from airplanes to locomotives to ships and massive farm combines.

David McCollum is bringing his interdisciplinary expertise in engineering, economics and policy to several initiatives at Oak Ridge National Laboratory in the global effort to transform energy systems equitably while respecting planetary boundaries. Credit: Lindsay McCollum

David McCollum is using his interdisciplinary expertise, international networks and boundless enthusiasm to lead Oak Ridge National Laboratory’s contributions to the Net Zero World initiative.

ORNL researchers worked with partners at the Colorado School of Mines and Baylor University to develop a new process optimization and control method for a closed-circuit reverse osmosis desalination system. The work is intended to support fully automated, decentralized water treatment plants. Credit: Andrew Sproles/ORNL, U.S. Dept. of Energy

Oak Ridge National Laboratory scientists worked with the Colorado School of Mines and Baylor University to develop and test control methods for autonomous water treatment plants that use less energy and generate less waste.

Bruce Warmack is using his physics and electrical engineering expertise to analyze advanced sensors for the power grid on a new testbed he developed at the Distributed Energy Communications and Controls Laboratory at ORNL. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

Bruce Warmack has been fascinated by science since his mother finally let him have a chemistry set at the age of nine. He’d been pestering her for one since he was six.

SPRUCE experiment

Oak Ridge National Laboratory scientists evaluating northern peatland responses to environmental change recorded extraordinary fine-root growth with increasing temperatures, indicating that this previously hidden belowground mechanism may play an important role in how carbon-rich peatlands respond to warming.