Skip to main content
From left, Michael Starke, Steven Campbell and Madhu Chinthavali of ORNL discuss the configuration of the power electronics hub demonstrated with hardware in the low-voltage lab at GRID-C. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

Researchers at ORNL recently demonstrated a new technology to better control how power flows to and from commercial buildings equipped with solar, wind or other renewable energy generation.

ORNL will use its land surface modeling tools to determine Baltimore’s climate risk and analyze green infrastructure improvements that can help mitigate impacts on underserved communities as part of a DOE Urban Integrated Field Laboratory project. Source: Google Earth, accessed Sept. 12, 2022

ORNL researchers are deploying their broad expertise in climate data and modeling to create science-based mitigation strategies for cities stressed by climate change as part of two U.S. Department of Energy Urban Integrated Field Laboratory projects.

Thomaz Carvalhaes. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

In human security research, Thomaz Carvalhaes says, there are typically two perspectives: technocentric and human centric. Rather than pick just one for his work, Carvalhaes uses data from both perspectives to understand how technology impacts the lives of people.

Oak Ridge National Laboratory’s software suite AutoBEM is being used in the architecture, city planning, real estate and home efficiency industries. Users take advantage of the suite’s energy modeling of almost all U.S. buildings. Credit: ORNL, U.S. Dept. of Energy

Two years after ORNL provided a model of nearly every building in America, commercial partners are using the tool for tasks ranging from designing energy-efficient buildings and cities to linking energy efficiency to real estate value and risk.

Solar panels funded by the Honnold Foundation are installed in Adjuntas, Puerto Rico. Credit: Fabio Andrade

When Hurricane Maria battered Puerto Rico in 2017, winds snapped trees and destroyed homes, while heavy rains transformed streets into rivers. But after the storm passed, the human toll continued to grow as residents struggled without electricity for months. Five years later, power outages remain long and frequent.

ORNL researchers are perfecting ways to use drones to check remote parts of the electric grid for dangerous electrical arcing that could start wildfires. Credit: ORNL, U.S. Dept. of Energy

As climate change leads to larger and more frequent wildfires, researchers at ORNL are using sensors, drones and machine learning to both prevent fires and reduce their damage to the electric grid.

Sophie Voisin, an ORNL software engineer, was part of a team that won a 2014 R&D 100 Award for work on Intelligent Software for a Personalized Modeling of Expert Opinions, Decisions and Errors in Visual Examination Tasks. Credit: Jason Richards/ORNL, U.S. Dept. of Energy

Cameras see the world differently than humans. Resolution, equipment, lighting, distance and atmospheric conditions can impact how a person interprets objects on a photo.

Data from different sources are joined on platforms created by ORNL researchers to offer better information for decision makers. Credit: ORNL/Nathan Armistead

When the COVID-19 pandemic stunned the world in 2020, researchers at ORNL wondered how they could extend their support and help

Doug Kothe

Doug Kothe has been named associate laboratory director for the Computing and Computational Sciences Directorate at ORNL, effective June 6.

ORNL scientists created a geodemographic cluster for the Atlanta metro area that identifies risk factors related to climate impacts. Credit: ORNL/U.S. Dept. of Energy

A new capability to identify urban neighborhoods, down to the block and building level, that are most vulnerable to climate change could help ensure that mitigation and resilience programs reach the people who need them the most.