Skip to main content
ORRUBA now fits tidily into this sphere. At left, a beam line directs energetic radioactive nuclei into the sphere to strike a target located at the center

Ancient Greeks imagined that everything in the natural world came from their goddess Physis; her name is the source of the word physics.

Oak Ridge National Laboratory scientists have developed an experiment for testing potential materials for use in interplanetary travel. The experiment exposes prototype materials to temperatures over 2,400 degrees Celsius with only 300 watts of input electrical power. Credit: Carlos Jones, Oak Ridge National Laboratory, U.S. Dept. of Energy

If humankind reaches Mars this century, an Oak Ridge National Laboratory-developed experiment testing advanced materials for spacecraft may play a key role. 

Snapshot of total temperature distribution at supersonic speed of mach 2.4. Total temperature allows the team to visualize the extent of the exhaust plumes as the temperature of the plumes is much greater than that of the surrounding atmosphere. Credit: NASA

The type of vehicle that will carry people to the Red Planet is shaping up to be “like a two-story house you’re trying to land on another planet. 

As part of DOE’s HPC4Mobility initiative ORNL researchers developed machine learning algorithms that can control smart traffic lights at intersections to facilitate the smooth flow of traffic and increase fuel efficiency.

A modern, healthy transportation system is vital to the nation’s economic security and the American standard of living. The U.S. Department of Energy’s Oak Ridge National Laboratory (ORNL) is engaged in a broad portfolio of scientific research for improved mobility

Layering on the strength

A team including Oak Ridge National Laboratory and University of Tennessee researchers demonstrated a novel 3D printing approach called Z-pinning that can increase the material’s strength and toughness by more than three and a half times compared to conventional additive manufacturing processes.

Galactic wind simulation

Using the Titan supercomputer at Oak Ridge National Laboratory, a team of astrophysicists created a set of galactic wind simulations of the highest resolution ever performed. The simulations will allow researchers to gather and interpret more accurate, detailed data that elucidates how galactic winds affect the formation and evolution of galaxies.

Desalination process

A new method developed at Oak Ridge National Laboratory improves the energy efficiency of a desalination process known as solar-thermal evaporation. 

Batteries—Polymers that bind

A team of researchers at Oak Ridge National Laboratory have demonstrated that designed synthetic polymers can serve as a high-performance binding material for next-generation lithium-ion batteries.

Quantum—Widening the net

Scientists at Oak Ridge National Laboratory studying quantum communications have discovered a more practical way to share secret messages among three parties, which could ultimately lead to better cybersecurity for the electric grid 

Quantum—Squeezed light cuts noise

Oak Ridge National Laboratory physicists studying quantum sensing, which could impact a wide range of potential applications from airport security scanning to gravitational wave measurements, have outlined in ACS Photonics the dramatic advances in the field.