Skip to main content
Nicholas Peters and Raphael Pooser

Of the $61 million recently announced by the U.S. Department of Energy for quantum information science studies, $17.5 million will fund research at DOE’s Oak Ridge National Laboratory. These projects will help build the foundation for the quantum internet, advance quantum entanglement capabilities — which involve sharing information through paired particles of light called photons — and develop next-generation quantum sensors.

ORNL’s particle entanglement machine is a precursor to the device that researchers at the University of Oklahoma are building, which will produce entangled quantum particles for quantum sensing to detect underground pipeline leaks. Credit: ORNL, U.S. Dept. of Energy

To minimize potential damage from underground oil and gas leaks, Oak Ridge National Laboratory is co-developing a quantum sensing system to detect pipeline leaks more quickly.

ORNL’s Sergei Kalinin and Rama Vasudevan (foreground) use scanning probe microscopy to study bulk ferroelectricity and surface electrochemistry -- and generate a lot of data. Credit: Jason Richards/ORNL, U.S. Dept. of Energy

At the Department of Energy’s Oak Ridge National Laboratory, scientists use artificial intelligence, or AI, to accelerate the discovery and development of materials for energy and information technologies.

Each point on the sphere of this visual representation of arbitrary frequency-bin qubit states corresponds to a unique quantum state, and the gray sections represent the measurement results. The zoomed-in view illustrates examples of three quantum states plotted next to their ideal targets (blue dots). Credit: Joseph Lukens/ORNL, U.S. Dept. of Energy

A team of researchers at Oak Ridge National Laboratory and Purdue University has taken an important step toward this goal by harnessing the frequency, or color, of light. Such capabilities could contribute to more practical and large-scale quantum networks exponentially more powerful and secure than the classical networks we have today.

The students analyzed diatom images like this one to compare wild and genetically modified strains of these organisms. Credit: Alison Pawlicki/Oak Ridge National Laboratory, US Department of Energy.

Students often participate in internships and receive formal training in their chosen career fields during college, but some pursue professional development opportunities even earlier.

Tungsten tiles for fusion

Using additive manufacturing, scientists experimenting with tungsten at Oak Ridge National Laboratory hope to unlock new potential of the high-performance heat-transferring material used to protect components from the plasma inside a fusion reactor. Fusion requires hydrogen isotopes to reach millions of degrees.

Batteries—Polymers that bind

A team of researchers at Oak Ridge National Laboratory have demonstrated that designed synthetic polymers can serve as a high-performance binding material for next-generation lithium-ion batteries.

Quantum—Widening the net

Scientists at Oak Ridge National Laboratory studying quantum communications have discovered a more practical way to share secret messages among three parties, which could ultimately lead to better cybersecurity for the electric grid 

Quantum—Squeezed light cuts noise

Oak Ridge National Laboratory physicists studying quantum sensing, which could impact a wide range of potential applications from airport security scanning to gravitational wave measurements, have outlined in ACS Photonics the dramatic advances in the field.

The illustrations show how the correlation between lattice distortion and proton binding energy in a material affects proton conduction in different environments. Mitigating this interaction could help researchers improve the ionic conductivity of solid materials.

Ionic conduction involves the movement of ions from one location to another inside a material. The ions travel through point defects, which are irregularities in the otherwise consistent arrangement of atoms known as the crystal lattice. This sometimes sluggish process can limit the performance and efficiency of fuel cells, batteries, and other energy storage technologies.