Skip to main content
Low-cost, compact, printed sensor that can collect and transmit data on electrical appliances for better load monitoring

Scientists at Oak Ridge National Laboratory have developed a low-cost, printed, flexible sensor that can wrap around power cables to precisely monitor electrical loads from household appliances to support grid operations.

 

Alex Roschli in front of BAAM

Alex Roschli is no stranger to finding himself in unique situations. After all, the early career researcher in ORNL’s Manufacturing Systems Research group bears a last name that only 29 other people share in the United States, and he’s certain he’s the only Roschli (a moniker that hails from Switzerland) with the first name Alex.

The concrete parts are installed in a residential and commercial tower (above center and below) on the site of the Domino Sugar Factory along the waterfront in Brooklyn. Windows in the tower resemble sugar crystals. Image credit: Gate Precast

A residential and commercial tower under development in Brooklyn that is changing the New York City skyline has its roots in research at the Department of Energy’s Oak Ridge National Laboratory.

Transportation Energy Data Book Edition 37

Oak Ridge National Laboratory’s latest Transportation Energy Data Book: Edition 37 reports that the number of vehicles nationwide is growing faster than the population, with sales more than 17 million since 2015, and the average household vehicle travels more than 11,000 miles per year.

In this MXene electrode, choosing the appropriate solvent for the electrolyte can increase energy density significantly. This scanning electron microscopy image shows fine features of a film only 5 microns thick—approximately 10 times narrower than a human hair. Credit: Drexel University; image by Tyler Mathis
Scientists at ORNL, Drexel University and their partners have discovered a way to improve the energy density of promising energy-storage materials, conductive two-dimensional ceramics called MXenes.
ORNL will use state-of-the-art R&D tools at the Battery Manufacturing Facility to develop new methods for separating and reclaiming valuable materials from spent EV batteries.

The use of lithium-ion batteries has surged in recent years, starting with electronics and expanding into many applications, including the growing electric and hybrid vehicle industry. But the technologies to optimize recycling of these batteries have not kept pace.

Laminations such as these are compiled to form the core of modern electric vehicle motors. ORNL has developed a software toolkit to speed the development of new motor designs and to improve the accuracy of their real-world performance.

Oak Ridge National Laboratory scientists have created open source software that scales up analysis of motor designs to run on the fastest computers available, including those accessible to outside users at the Oak Ridge Leadership Computing Facility.

Researchers analyzed the oxygen structure (highlighted in red) found in a perovskite’s crystal structure at room temperature, 500°C and 900°C using neutron scattering at ORNL’s Spallation Neutron Source. Analyzing how these structures impact solid oxide f

A University of South Carolina research team is investigating the oxygen reduction performance of energy conversion materials called perovskites by using neutron diffraction at Oak Ridge National Laboratory’s Spallation Neutron Source.

ORNL scientists used commuting behavior data from East Tennessee to demonstrate how machine learning models can easily accept new data, quickly re-train themselves and update predictions about commuting patterns. Credit: April Morton/Oak Ridge National La

Oak Ridge National Laboratory geospatial scientists who study the movement of people are using advanced machine learning methods to better predict home-to-work commuting patterns.