Skip to main content
Argon pellet injection text

As scientists study approaches to best sustain a fusion reactor, a team led by Oak Ridge National Laboratory investigated injecting shattered argon pellets into a super-hot plasma, when needed, to protect the reactor’s interior wall from high-energy runaway electrons.

Cropped INFUSE logo

The U.S. Department of Energy announced funding for 12 projects with private industry to enable collaboration with DOE national laboratories on overcoming challenges in fusion energy development.

Background image represents the cobalt oxide structure Goodenough demonstrated could produce four volts of electricity with intercalated lithium ions. This early research led to energy storage and performance advances in myriad electronic applications. Credit: Jill Hemman/Oak Ridge National Laboratory, U.S. Dept. of Energy

Two of the researchers who share the Nobel Prize in Chemistry announced Wednesday—John B. Goodenough of the University of Texas at Austin and M. Stanley Whittingham of Binghamton University in New York—have research ties to ORNL.

Project bridges compute staff, resources at ORNL and VA health data to speed suicide risk screening for US veterans. Image Credit: Carlos Jones, ORNL

In collaboration with the Department of Veterans Affairs, a team at Oak Ridge National Laboratory has expanded a VA-developed predictive computing model to identify veterans at risk of suicide and sped it up to run 300 times faster, a gain that could profoundly affect the VA’s ability to reach susceptible veterans quickly. 

Tungsten tiles for fusion

Using additive manufacturing, scientists experimenting with tungsten at Oak Ridge National Laboratory hope to unlock new potential of the high-performance heat-transferring material used to protect components from the plasma inside a fusion reactor. Fusion requires hydrogen isotopes to reach millions of degrees.

Computing—Building a brain

Researchers at Oak Ridge National Laboratory are taking inspiration from neural networks to create computers that mimic the human brain—a quickly growing field known as neuromorphic computing.

Computing—Routing out the bugs

A study led by Oak Ridge National Laboratory explored the interface between the Department of Veterans Affairs’ healthcare data system and the data itself to detect the likelihood of errors and designed an auto-surveillance tool

ORNL collaborator Hsiu-Wen Wang led the neutron scattering experiments at the Spallation Neutron Source to probe complex electrolyte solutions that challenge nuclear waste processing at Hanford and other sites. Credit: Genevieve Martin/Oak Ridge National Laboratory, U.S. Dept. of Energy.

Researchers at the Department of Energy’s Oak Ridge National Laboratory, Pacific Northwest National Laboratory and Washington State University teamed up to investigate the complex dynamics of low-water liquids that challenge nuclear waste processing at federal cleanup sites.

The illustrations show how the correlation between lattice distortion and proton binding energy in a material affects proton conduction in different environments. Mitigating this interaction could help researchers improve the ionic conductivity of solid materials.

Ionic conduction involves the movement of ions from one location to another inside a material. The ions travel through point defects, which are irregularities in the otherwise consistent arrangement of atoms known as the crystal lattice. This sometimes sluggish process can limit the performance and efficiency of fuel cells, batteries, and other energy storage technologies.

An ORNL-developed graphite foam, which could be used in plasma-facing components in fusion reactors, performed well during testing at the Wendlestein 7-X stellarator in Germany.

Scientists have tested a novel heat-shielding graphite foam, originally created at Oak Ridge National Laboratory, at Germany’s Wendelstein 7-X stellarator with promising results for use in plasma-facing components of fusion reactors.