Skip to main content
The researchers used the new model to accurately identify clusters of gene mutations (spheres), which helped them study the emergence of various genetic diseases. Image credit: Ivaylo Ivanov, Georgia State University.

Environmental conditions, lifestyle choices, chemical exposure, and foodborne and airborne pathogens are among the external factors that can cause disease. In contrast, internal genetic factors can be responsible for the onset and progression of diseases ranging from degenerative neurological disorders to some cancers.

ORNL researcher Ben Ollis is optimizing ORNL-developed control systems for a range of projects in which solar energy, energy storage and other locally sited power assets known as microgrids provide reliable, secure electricity to homes and businesses.

While learning the ins and outs of utility operations as a part-time dispatcher during college, Ben Ollis coped with issues from storm-damaged power lines to transformer faults caused by snakes crawling into substation equipment

Combining fundamental chemistry with high-performance computing resources at ORNL, researchers demonstrate a more efficient method for recovering uranium from seawater, unveiling a prototype material that outperforms best-in-class uranium adsorbents. Credit: Alexander Ivanov/Oak Ridge National Laboratory, U.S. Dept. of Energy.

Scientists have demonstrated a new bio-inspired material for an eco-friendly and cost-effective approach to recovering uranium from seawater.

Oak Ridge National Laboratory develops liquid helium auto-fill technology

OAK RIDGE, Tenn., May 14, 2019—Advanced Research Systems, Inc., has licensed a technology designed to automatically refill liquid helium used in laboratory equipment for low-temperature scientific experiments, which will reduce downtime, recover more helium and increase overall efficiency.

Lincoln Electric signs agreement with ORNL

OAK RIDGE, Tenn., May 8, 2019—Oak Ridge National Laboratory and Lincoln Electric (NASDAQ: LECO) announced their continued collaboration on large-scale, robotic additive manufacturing technology at the Department of Energy’s Advanced Manufacturing InnovationXLab Summit.

U.S. Department of Energy and Cray to Deliver Record-Setting Frontier Supercomputer at ORNL

OAK RIDGE, Tenn., May 7, 2019—The U.S. Department of Energy today announced a contract with Cray Inc. to build the Frontier supercomputer at Oak Ridge National Laboratory, which is anticipated to debut in 2021 as the world’s most powerful computer with a performance of greater than 1.5 exaflops.

Pictured in this early conceptual drawing, the Translational Research Capability planned for Oak Ridge National Laboratory will follow the design of research facilities constructed during the laboratory’s modernization campaign.

OAK RIDGE, Tenn., May 7, 2019—Energy Secretary Rick Perry, Congressman Chuck Fleischmann and lab officials today broke ground on a multipurpose research facility that will provide state-of-the-art laboratory space 

ORNL collaborator Hsiu-Wen Wang led the neutron scattering experiments at the Spallation Neutron Source to probe complex electrolyte solutions that challenge nuclear waste processing at Hanford and other sites. Credit: Genevieve Martin/Oak Ridge National Laboratory, U.S. Dept. of Energy.

Researchers at the Department of Energy’s Oak Ridge National Laboratory, Pacific Northwest National Laboratory and Washington State University teamed up to investigate the complex dynamics of low-water liquids that challenge nuclear waste processing at federal cleanup sites.

Virtual universes

Using Summit, the world’s most powerful supercomputer housed at Oak Ridge National Laboratory, a team led by Argonne National Laboratory ran three of the largest cosmological simulations known to date.

Mussel-like stickiness

Scientists at Oak Ridge National Laboratory have developed a new, stretchy plant-derived material that outperforms the adhesiveness of the natural chemical that gives mussels the ability to stick to rocks and ships.