Skip to main content
Colorized micrograph of lily pollen

Oak Ridge National Laboratory researchers have built a novel microscope that provides a “chemical lens” for viewing biological systems including cell membranes and biofilms.

Solid radium sulfate sits in the bottom of a flask during the recovery process. Credit: Oak Ridge National Laboratory, U.S. Dept. of Energy

Oak Ridge National Laboratory researchers have discovered a better way to separate actinium-227, a rare isotope essential for an FDA-approved cancer treatment.

Wireless charging – Special delivery for UPS

Researchers at Oak Ridge National Laboratory demonstrated a 20-kilowatt bi-directional wireless charging system on a UPS plug-in hybrid electric delivery truck, advancing the technology to a larger class of vehicles and enabling a new energy storage method for fleet owners and their facilities.

Materials — Molding molecular matter

Scientists at Oak Ridge National Laboratory used a focused beam of electrons to stitch platinum-silicon molecules into graphene, marking the first deliberate insertion of artificial molecules into a graphene host matrix.

ORNL researchers developed sodium-ion batteries by pairing a high-energy oxide or phosphate cathode with a hard carbon anode and achieved 100 usage cycles at a one-hour charge and discharge rate. Credit: Mengya Li/Oak Ridge National Laboratory, U.S. Dept. of Energy

Researchers at ORNL demonstrated that sodium-ion batteries can serve as a low-cost, high performance substitute for rechargeable lithium-ion batteries commonly used in robotics, power tools, and grid-scale energy storage.

Smart Neighborhood homes

To better determine the potential energy cost savings among connected homes, researchers at Oak Ridge National Laboratory developed a computer simulation to more accurately compare energy use on similar weather days.

Oak Ridge National Laboratory scientists have developed an experiment for testing potential materials for use in interplanetary travel. The experiment exposes prototype materials to temperatures over 2,400 degrees Celsius with only 300 watts of input electrical power. Credit: Carlos Jones, Oak Ridge National Laboratory, U.S. Dept. of Energy

If humankind reaches Mars this century, an Oak Ridge National Laboratory-developed experiment testing advanced materials for spacecraft may play a key role. 

Galactic wind simulation

Using the Titan supercomputer at Oak Ridge National Laboratory, a team of astrophysicists created a set of galactic wind simulations of the highest resolution ever performed. The simulations will allow researchers to gather and interpret more accurate, detailed data that elucidates how galactic winds affect the formation and evolution of galaxies.

Quantum—Widening the net

Scientists at Oak Ridge National Laboratory studying quantum communications have discovered a more practical way to share secret messages among three parties, which could ultimately lead to better cybersecurity for the electric grid 

Materials—Engineering heat transport

Scientists have discovered a way to alter heat transport in thermoelectric materials, a finding that may ultimately improve energy efficiency as the materials