Skip to main content
Atmospheric Radiation Measurement Data Center in Crested Butte, Colorado.

New data hosted through the Atmospheric Radiation Measurement Data Center at Oak Ridge National Laboratory will help improve models that predict climate change effects on the water supply in the Colorado River Basin.

ORNL researchers produced self-healable and highly adhesive elastomers, proving they self-repair in ambient conditions and underwater. This project garnered a 2021 R&D 100 Award. Credit: ORNL, U.S. Dept. of Energy

Research teams from the Department of Energy’s Oak Ridge National Laboratory and their technologies have received seven 2021 R&D 100 Awards, plus special recognition for a COVID-19-related project.

Oak Ridge National Laboratory entrance sign

A team from ORNL, Stanford University and Purdue University developed and demonstrated a novel, fully functional quantum local area network, or QLAN, to enable real-time adjustments to information shared with geographically isolated systems at ORNL

The D2U model categorizes user data by capturing behavior in all open programs throughout a user’s day. Credit: Nathan Armistead/ORNL, U.S. Dept. of Energy

Oak Ridge National Laboratory researchers have created a technology that more realistically emulates user activities to improve cyber testbeds and ultimately prevent cyberattacks.

Compression (red arrows) alters crystal symmetry (green arrows), which changes band dispersion (left and right), leading to highly mobile electrons. Credit: Jaimee Janiga, Andrew Sproles, Satoshi Okamoto/ORNL, U.S. Dept. of Energy

A team led by the ORNL has found a rare quantum material in which electrons move in coordinated ways, essentially “dancing.”

Nicholas Peters and Raphael Pooser

Of the $61 million recently announced by the U.S. Department of Energy for quantum information science studies, $17.5 million will fund research at DOE’s Oak Ridge National Laboratory. These projects will help build the foundation for the quantum internet, advance quantum entanglement capabilities — which involve sharing information through paired particles of light called photons — and develop next-generation quantum sensors.

Deeksha Rastogi uses high-performance computing to understand the human impacts of climate change. Credit: Carlos Jones, ORNL/U.S. Dept. of Energy

An international problem like climate change needs solutions that cross boundaries, both on maps and among disciplines. Oak Ridge National Laboratory computational scientist Deeksha Rastogi embodies that approach.

Former ORNL Director Thom Mason presents Tom Kollie with a National Intelligence Meritorious Unit Citation on behalf of James Clapper, former director of national intelligence, and the national intelligence community in June 2017. Credit: Jason Richards/ORNL, U.S. Dept. of Energy

A 25-year career with the U.S. Navy, commanding combat missions overseas, brought Tom Kollie back to where he came from — ready to serve his country in a new way.

 

Fine roots from a larch tree peek out from a pile of peat excavated from an experimental warming plot in the SPRUCE experiment in Northern Minnesota. Credit: Colleen Iversen/ORNL, U.S. Dept. of Energy

New data hosted by Oak Ridge National Laboratory is helping scientists around the world understand the secret lives of plant roots as well as their impact on the global carbon cycle and climate change.

Summer Widner, Stephanie Timbs, James Gaugler and James Avenell of ORNL are part of a team that processes thorium-228, a byproduct of actinium-227. As new uses for thorium are realized, particularly in medicine, the lab expects the demand for the radioisotope to grow.

As a medical isotope, thorium-228 has a lot of potential — and Oak Ridge National Laboratory produces a lot.