Skip to main content
Tony Schmitz, UT/ORNL joint faculty researcher in machine tooling, has been elected to the College of Fellows of the American Society for Precision Engineering. Credit: Carlos Jones, Oak Ridge National Laboratory/U.S. Dept. of Energy

Tony Schmitz, joint faculty researcher in machining and machine tools at Oak Ridge National Laboratory, and mechanical, aerospace and biomedical engineering professor at the University of Tennessee, Knoxville, has been elected to the College of Fellows of the American Society for Precision Engineering.

Substituting deuterium for hydrogen makes methylammonium heavier and slows its swaying so it can interact with vibrations that remove heat, keeping charge carriers hot longer. Credit: Jill Hemman/ORNL, U.S. Dept. of Energy

Led by ORNL and the University of Tennessee, Knoxville, a study of a solar-energy material with a bright future revealed a way to slow phonons, the waves that transport heat.

ORNL researchers and energy storage startup Sparkz have developed a cobalt-free cathode material for use in lithium-ion batteries Credit: Ilias Belharouak/Oak Ridge National Laboratory, U.S. Dept. of Energy

Four research teams from the Department of Energy’s Oak Ridge National Laboratory and their technologies have received 2020 R&D 100 Awards.

EERE Assistant Secretary Daniel Simmons, center right, with ORNL’s Xin Sun, EERE Deputy Assistant Secretary Alex Fitzsimmons and ORNL’s Moe Khaleel, helped launch new capabilities to advance connected and automated vehicle technologies at the DOE National Transportation Research Center at ORNL. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

ORNL and Department of Energy officials dedicated the launch of two clean energy research initiatives that focus on the recycling and recovery of advanced manufacturing materials and on connected and

Xunxiang Hu, a Eugene P. Wigner Fellow in ORNL’s Materials Science and Technology Division, designed this machine to produce large, crack-free pieces of yttrium hydride to be used as a moderator in the core of ORNL’s Transformational Challenge Reactor and other microreactors. Credit: Xunxiang Hu/ORNL, U.S. Dept. of Energy

About 60 years ago, scientists discovered that a certain rare earth metal-hydrogen mixture, yttrium, could be the ideal moderator to go inside small, gas-cooled nuclear reactors.

ORNL researchers developed a quantum, or squeezed, light approach for atomic force microscopy that enables measurement of signals otherwise buried by noise. Credit: Raphael Pooser/ORNL, U.S. Dept. of Energy

Researchers at ORNL used quantum optics to advance state-of-the-art microscopy and illuminate a path to detecting material properties with greater sensitivity than is possible with traditional tools.

3D printed EMPOWER wall drawing

Oak Ridge National Laboratory researchers used additive manufacturing to build a first-of-its kind smart wall called EMPOWER.

Paul Abraham uses mass spectrometry to study proteins.

Systems biologist Paul Abraham uses his fascination with proteins, the molecular machines of nature, to explore new ways to engineer more productive ecosystems and hardier bioenergy crops.

A structural model of HgcA, shown in cyan, and HgcB, shown in purple, were created using metagenomic techniques to better understand the transformation of mercury into its toxic form, methylmercury. Photo credit: Connor Cooper/ORNL, U.S. Dept of Energy

A team led by ORNL created a computational model of the proteins responsible for the transformation of mercury to toxic methylmercury, marking a step forward in understanding how the reaction occurs and how mercury cycles through the environment.

3D-printed intensified device

Oak Ridge National Laboratory researchers have designed and additively manufactured a first-of-its-kind aluminum device that enhances the capture of carbon dioxide emitted from fossil fuel plants and other industrial processes.