Skip to main content
Nicholas Peters and Raphael Pooser

Of the $61 million recently announced by the U.S. Department of Energy for quantum information science studies, $17.5 million will fund research at DOE’s Oak Ridge National Laboratory. These projects will help build the foundation for the quantum internet, advance quantum entanglement capabilities — which involve sharing information through paired particles of light called photons — and develop next-generation quantum sensors.

The Oak Ridge National Environmental Research Park encompasses a 20,000 acre area that includes Oak Ridge National Laboratory. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

Anyone familiar with ORNL knows it’s a hub for world-class science. The nearly 33,000-acre space surrounding the lab is less known, but also unique.

Deeksha Rastogi uses high-performance computing to understand the human impacts of climate change. Credit: Carlos Jones, ORNL/U.S. Dept. of Energy

An international problem like climate change needs solutions that cross boundaries, both on maps and among disciplines. Oak Ridge National Laboratory computational scientist Deeksha Rastogi embodies that approach.

Fine roots from a larch tree peek out from a pile of peat excavated from an experimental warming plot in the SPRUCE experiment in Northern Minnesota. Credit: Colleen Iversen/ORNL, U.S. Dept. of Energy

New data hosted by Oak Ridge National Laboratory is helping scientists around the world understand the secret lives of plant roots as well as their impact on the global carbon cycle and climate change.

As the leader of ORNL’s Biodiversity and Ecosystem Health Group, environmental scientist Teresa Mathews works to understand the impacts of energy generation on water and solve challenging problems, including mercury pollution. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

Moving to landlocked Tennessee isn’t an obvious choice for most scientists with new doctorate degrees in coastal oceanography.

Summer Widner, Stephanie Timbs, James Gaugler and James Avenell of ORNL are part of a team that processes thorium-228, a byproduct of actinium-227. As new uses for thorium are realized, particularly in medicine, the lab expects the demand for the radioisotope to grow.

As a medical isotope, thorium-228 has a lot of potential — and Oak Ridge National Laboratory produces a lot.

A new tool that simulates the energy profile of every building in America will give homeowners, utilities and companies a quick way to determine energy use and cost-effective retrofits that can reduce energy and carbon emissions.

A new tool that simulates the energy profile of every building in America will give homeowners, utilities and companies a quick way to determine energy use and cost-effective retrofits that can reduce energy and carbon emissions.

ORNL’s particle entanglement machine is a precursor to the device that researchers at the University of Oklahoma are building, which will produce entangled quantum particles for quantum sensing to detect underground pipeline leaks. Credit: ORNL, U.S. Dept. of Energy

To minimize potential damage from underground oil and gas leaks, Oak Ridge National Laboratory is co-developing a quantum sensing system to detect pipeline leaks more quickly.

Scientists at Oak Ridge National Laboratory added new plant data to a computer model that simulates Arctic ecosystems, enabling it to better predict how vegetation in rapidly warming northern environments may respond to climate change.

Scientists at Oak Ridge National Laboratory added new plant data to a computer model that simulates Arctic ecosystems, enabling it to better predict how vegetation in rapidly warming northern environments may respond to climate change.

Researchers built optical tools called zero-mode waveguides, illustrated here, used to observe proteins that are implicated in human heart function. Credit: David S. White/University of Wisconsin-Madison

Researchers working with Oak Ridge National Laboratory developed a new method to observe how proteins, at the single-molecule level, bind with other molecules and more accurately pinpoint certain molecular behavior in complex