Skip to main content
A multiport design allows a utility to easily interface with an EV truck stop to provide fast-charging at megawatt-scale. Credit: Andy Sproles/ORNL, U.S. Dept. of Energy

Researchers at Oak Ridge National Laboratory have designed architecture, software and control strategies for a futuristic EV truck stop that can draw megawatts of power and reduce carbon emissions.

Researcher Sun Hongbin examines material changes to a battery made in the DOE’s Battery Manufacturing Facility using an ultrasound sensor. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

Scientists at Oak Ridge National Laboratory are using ultrasounds — usually associated with medical imaging — to check the health of an operating battery. The technique uses sensors as small as a thumbnail, which could be attached to a lithium-ion battery inside a car.

From left to right, Cortney Piper, executive director of the Tennessee Advanced Energy Business Council; Susan Hubbard, ORNL deputy for science and technology; Dan Miller, innovation Crossroads program lead; and Mike Paulus, ORNL director of technology transfer, attend the Innovation Crossroads Showcase at the Knoxville Chamber on Sept. 22. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

A crowd of investors and supporters turned out for last week’s Innovation Crossroads Showcase at the Knoxville Chamber as part of Innov865 Week. Sponsored by ORNL and the Tennessee Advanced Energy Business Council, the event celebrated deep-tech entrepreneurs and the Oak Ridge Corridor as a growing energy innovation hub for the nation.

Melton Hill Dam

To further the potential benefits of the nation’s hydropower resources, researchers at Oak Ridge National Laboratory have developed and maintain a comprehensive water energy digital platform called HydroSource.

ORNL mechanical engineer Marm Dixit focuses his research on solid-state batteries and their potential use in electric vehicles. Credit: ORNL, U.S. Dept. of Energy

Mechanical engineer Marm Dixit’s work is all about getting electricity to flow efficiently from one end of a solid-state battery to the other. It’s a high-stakes problem

Earth Day

Tackling the climate crisis and achieving an equitable clean energy future are among the biggest challenges of our time. 

This image illustrates lattice distortion, strain, and ion distribution in metal halide perovskites, which can be induced by external stimuli such as light and heat. Image credit: Stephen Jesse/ORNL

A study by researchers at the ORNL takes a fresh look at what could become the first step toward a new generation of solar batteries.

ORNL researchers worked with partners at the Colorado School of Mines and Baylor University to develop a new process optimization and control method for a closed-circuit reverse osmosis desalination system. The work is intended to support fully automated, decentralized water treatment plants. Credit: Andrew Sproles/ORNL, U.S. Dept. of Energy

Oak Ridge National Laboratory scientists worked with the Colorado School of Mines and Baylor University to develop and test control methods for autonomous water treatment plants that use less energy and generate less waste.

Bruce Warmack is using his physics and electrical engineering expertise to analyze advanced sensors for the power grid on a new testbed he developed at the Distributed Energy Communications and Controls Laboratory at ORNL. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

Bruce Warmack has been fascinated by science since his mother finally let him have a chemistry set at the age of nine. He’d been pestering her for one since he was six.

ORNL has developed the SolidPAC tool to help researchers design energy-dense, long-lived and safe solid-state batteries. Credit: Andy Sproles/ORNL, U.S. Dept. of Energy

Scientists can speed the design of energy-dense solid-state batteries using a new tool created by Oak Ridge National Laboratory.