Skip to main content
ORNL scientists developed a method that improves the accuracy of the CRISPR Cas9 gene editing tool used to modify microbes for renewable fuels and chemicals production. This research draws on the lab’s expertise in quantum biology, artificial intelligence and synthetic biology. Credit: Philip Gray/ORNL, U.S. Dept. of Energy

Scientists at ORNL used their expertise in quantum biology, artificial intelligence and bioengineering to improve how CRISPR Cas9 genome editing tools work on organisms like microbes that can be modified to produce renewable fuels and chemicals.

An AI-generated image representing atoms and artificial neural networks. Credit: Maxim Ziatdinov, ORNL

Researchers at ORNL have developed a machine-learning inspired software package that provides end-to-end image analysis of electron and scanning probe microscopy images.

Oak Ridge National Laboratory led a team of scientists to design a molecule that disrupts the infection mechanism of the SARS-CoV-2 coronavirus and could be used to develop new treatments for COVID-19 and future virus outbreaks. Credit: Michelle Lehman/ORNL, U.S. Dept. of Energy

A team of scientists led by the Department of Energy’s Oak Ridge National Laboratory designed a molecule that disrupts the infection mechanism of the SARS-CoV-2 coronavirus and could be used to develop new treatments for COVID-19 and other viral diseases.

ORNL is designing a neutronic research engine to evaluate new materials and designs for advanced vehicles using the facilities at the Spallation Neutron Source at ORNL. Credit: Jill Hemman/ORNL, U.S. Dept of Energy, and  Southwest Research Institute.

In the quest for advanced vehicles with higher energy efficiency and ultra-low emissions, ORNL researchers are accelerating a research engine that gives scientists and engineers an unprecedented view inside the atomic-level workings of combustion engines in real time.

Distinguished Inventors

Six scientists at the Department of Energy’s Oak Ridge National Laboratory were named Battelle Distinguished Inventors, in recognition of obtaining 14 or more patents during their careers at the lab.

Paul Kent, shown above posing with Summit in April 2018, received the 2020 ORNL Director’s Award for Outstanding Individual Accomplishment in Science and Technology. Credit: ORNL, U.S. Dept. of Energy

The annual Director's Awards recognized four individuals and teams including awards for leadership in quantum simulation development and application on high-performance computing platforms, and revolutionary advancements in the area of microbial

ORNL researchers developed a quantum, or squeezed, light approach for atomic force microscopy that enables measurement of signals otherwise buried by noise. Credit: Raphael Pooser/ORNL, U.S. Dept. of Energy

Researchers at ORNL used quantum optics to advance state-of-the-art microscopy and illuminate a path to detecting material properties with greater sensitivity than is possible with traditional tools.

Analyses of lung fluid cells from COVID-19 patients conducted on the nation’s fastest supercomputer point to gene expression patterns that may explain the runaway symptoms produced by the body’s response to SARS-CoV-2. Credit: Jason B. Smith/ORNL, U.S. Dept. of Energy

A team led by Dan Jacobson of Oak Ridge National Laboratory used the Summit supercomputer at ORNL to analyze genes from cells in the lung fluid of nine COVID-19 patients compared with 40 control patients.

Sergei Kalinin

Five researchers at the Department of Energy’s Oak Ridge National Laboratory have been named ORNL Corporate Fellows in recognition of significant career accomplishments and continued leadership in their scientific fields.

The protease protein is both shaped like a heart and functions as one, allowing the virus replicate and spread. Inhibiting the protease would block virus reproduction. Credit: Andrey Kovalevsky/ORNL, U.S. Dept. of Energy

A team of researchers has performed the first room-temperature X-ray measurements on the SARS-CoV-2 main protease — the enzyme that enables the virus to reproduce.