Skip to main content
ORNL alanine_graphic.jpg

OAK RIDGE, Tenn., Jan. 31, 2019—A new electron microscopy technique that detects the subtle changes in the weight of proteins at the nanoscale—while keeping the sample intact—could open a new pathway for deeper, more comprehensive studies of the basic building blocks of life. 

Symposium attendees represented ORNL, the University of Arizona, Georgia Tech, the University of Tennessee-Knoxville, and Brigham Young University.

Quantum experts from across government and academia descended on Oak Ridge National Laboratory on Wednesday, January 16 for the lab’s first-ever Quantum Networking Symposium. The symposium’s purpose, said organizer and ORNL senior scientist Nick Peters, was to gather quantum an...

Nuclear—Deep space travel

By automating the production of neptunium oxide-aluminum pellets, Oak Ridge National Laboratory scientists have eliminated a key bottleneck when producing plutonium-238 used by NASA to fuel deep space exploration.

18-G01703 PinchPoint-v2.jpg

Researchers used neutron scattering at Oak Ridge National Laboratory’s Spallation Neutron Source to investigate bizarre magnetic behavior, believed to be a possible quantum spin liquid rarely found in a three-dimensional material. QSLs are exotic states of matter where magnetism continues to fluctuate at low temperatures instead of “freezing” into aligned north and south poles as with traditional magnets.

Joseph Lukens, Raphael Pooser, and Nick Peters (from left) of ORNL’s Quantum Information Science Group developed and tested a new interferometer made from highly nonlinear fiber in pursuit of improved sensitivity at the quantum scale. Credit: Carlos Jones

By analyzing a pattern formed by the intersection of two beams of light, researchers can capture elusive details regarding the behavior of mysterious phenomena such as gravitational waves. Creating and precisely measuring these interference patterns would not be possible without instruments called interferometers.

exp_in_10_dry_tube.jpg

Scientists from Oak Ridge National Laboratory performed a corrosion test in a neutron radiation field to support the continued development of molten salt reactors.

L-R, Researchers Nils Stenvig, Isabelle Snyder and Travis Smith are developing tools and deploying sensors to aid decision-making as Puerto Rico rebuilds and modernizes its power grid.

As Puerto Rico works to restore and modernize its power grid after last year’s devastating hurricane season, researchers at Oak Ridge National Laboratory have stepped up to provide unique analysis, sensing and modeling tools to better inform decisions.

Physics_silicon-detectors.jpg

Physicists turned to the “doubly magic” tin isotope Sn-132, colliding it with a target at Oak Ridge National Laboratory to assess its properties as it lost a neutron to become Sn-131.

hvac_grid03.png

Oak Ridge National Laboratory scientists have devised a method to control the heating and cooling systems of a large network of buildings for power grid stability—all while ensuring the comfort of occupants.

Two neutron diffraction experiments (represented by pink and blue neutron beams) probed a salty solution to reveal its atomic structure. The only difference between the experiments was the identity of the oxygen isotope (O*) that labeled nitrate molecules

Scientists at the Department of Energy’s Oak Ridge National Laboratory used neutrons, isotopes and simulations to “see” the atomic structure of a saturated solution and found evidence supporting one of two competing hypotheses about how ions come