Skip to main content
Researchers at the Center for Nanophase Materials Sciences demonstrated an insect-inspired, mechanical gyroscope to advance motion sensing capabilities in consumer-sized applications. Credit: Jill Hemman/Oak Ridge National Laboratory, U.S Dept. of Energy

Researchers at ORNL and the National Renewable Energy Laboratory took inspiration from flying insects to demonstrate a miniaturized gyroscope, a special sensor used in navigation technologies. 

Tungsten tiles for fusion

Using additive manufacturing, scientists experimenting with tungsten at Oak Ridge National Laboratory hope to unlock new potential of the high-performance heat-transferring material used to protect components from the plasma inside a fusion reactor. Fusion requires hydrogen isotopes to reach millions of degrees.

Desalination process

A new method developed at Oak Ridge National Laboratory improves the energy efficiency of a desalination process known as solar-thermal evaporation. 

An ORNL-developed graphite foam, which could be used in plasma-facing components in fusion reactors, performed well during testing at the Wendlestein 7-X stellarator in Germany.

Scientists have tested a novel heat-shielding graphite foam, originally created at Oak Ridge National Laboratory, at Germany’s Wendelstein 7-X stellarator with promising results for use in plasma-facing components of fusion reactors.

Sean Hearne has been named director of the Center for Nanophase Materials Sciences at Oak Ridge National Laboratory.

OAK RIDGE, Tenn., Feb. 8, 2019—The Department of Energy’s Oak Ridge National Laboratory has named Sean Hearne director of the Center for Nanophase Materials Sciences. The center is a DOE Office of Science User Facility that brings world-leading resources and capabilities to the nanoscience resear...

ORNL alanine_graphic.jpg

OAK RIDGE, Tenn., Jan. 31, 2019—A new electron microscopy technique that detects the subtle changes in the weight of proteins at the nanoscale—while keeping the sample intact—could open a new pathway for deeper, more comprehensive studies of the basic building blocks of life. 

B_Hudak_ORNL.jpg

An Oak Ridge National Laboratory-led team used a scanning transmission electron microscope to selectively position single atoms below a crystal’s surface for the first time.

After a monolayer MXene is heated, functional groups are removed from both surfaces. Titanium and carbon atoms migrate from one area to both surfaces, creating a pore and forming new structures. Credit: ORNL, USDOE; image by Xiahan Sang and Andy Sproles.

Scientists at the Department of Energy’s Oak Ridge National Laboratory induced a two-dimensional material to cannibalize itself for atomic “building blocks” from which stable structures formed. The findings, reported in Nature Communications, provide insights that ...

An ORNL-led team used scanning transmission electron microscopy to observed atomic transformations on the edges of pores in a two-dimensional transition metal dichalcogenide. The controlled production of nanopores with stable atomic edge structures may en

An Oak Ridge National Laboratory–led team has learned how to engineer tiny pores embellished with distinct edge structures inside atomically-thin two-dimensional, or 2D, crystals. The 2D crystals are envisioned as stackable building blocks for ultrathin electronics and other advance...

Radiochemical technicians David Denton and Karen Murphy use hot cell manipulators at Oak Ridge National Laboratory during the production of actinium-227.

The Department of Energy’s Oak Ridge National Laboratory is now producing actinium-227 (Ac-227) to meet projected demand for a highly effective cancer drug through a 10-year contract between the U.S. DOE Isotope Program and Bayer.