Skip to main content
New manufacturing process produces better, cheaper cathodes for lithium-ion batteries. Credit: Andy Sproles/ORNL, U.S. Dept. of Energy

Researchers at ORNL have developed a new method for producing a key component of lithium-ion batteries. The result is a more affordable battery from a faster, less wasteful process that uses less toxic material.

Jack Cahill of ORNL’s Biosciences Division is developing new techniques to view and measure the previously unseen to better understand important chemical processes at play in plant-microbe interactions and in human health. In this photo, Cahill is positioning a rhizosphere-on-a-chip platform for imaging by mass spectrometry. Credit: Carlos Jones/ORNL, U.S. Dept of Energy

John “Jack” Cahill is out to illuminate previously unseen processes with new technology, advancing our understanding of how chemicals interact to influence complex systems whether it’s in the human body or in the world beneath our feet.

ORNL inventors and Safire Technology Group leadership attended a licensing event at the lab on Nov. 15. Standing, from left to right, are Katie Browning, Mike Grubbs, Gabriel Veith, Hayley Kleciak, Beth Armstrong, Sergiy Kalnaus and Kevin Cooley. Seated are Susan Hubbard and John Lee. Credit: Genevieve Martin/ORNL, U.S. Dept. of Energy

The Department of Energy’s Oak Ridge National Laboratory has exclusively licensed battery electrolyte technology to Safire Technology Group. The collection of five patented technologies is designed for a drop-in additive for lithium-ion batteries that prevents explosions and fire from impact.

ORNL researchers led by Michael Garvin, left, and David Kainer discovered genetic mutations called structural variants and linked them to autism spectrum disorders, demonstrating an approach that could be used to develop better diagnostics and drug therapies. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

ORNL researchers discovered genetic mutations that underlie autism using a new approach that could lead to better diagnostics and drug therapies.

Researchers at ORNL designed a recyclable carbon fiber material to promote low-carbon manufacturing. Credit: Chad Malone/ORNL, U.S. Dept. of Energy

Oak Ridge National Laboratory scientists designed a recyclable polymer for carbon-fiber composites to enable circular manufacturing of parts that boost energy efficiency in automotive, wind power and aerospace applications.

Field emission scanning electron microscopy reveals the microstructure of the porous activated carbon that can confine hydrogen at the nanoscale. Credit: Joaquin Silvestre-Albero

Neutron scattering techniques were used as part of a study of a novel nanoreactor material that grows crystalline hydrogen clathrates, or HCs, capable of storing hydrogen.

Researchers from ORNL and Argonne National Laboratory will work with Wabtec, a leading manufacturer of freight locomotives, to develop the hardware and control strategies for a single cylinder, dual-fuel engine to demonstrate the viability of using alternative fuels for locomotives. The team’s goal is to reduce carbon emissions from the roughly 25,000 locomotives already in use in North America. Credit: ORNL, U.S. Dept. of Energy

As the United States shifts away from fossil-fuel-burning cars and trucks, scientists at the Department of Energy’s Oak Ridge and Argonne national laboratories are exploring options for another form of transportation: trains. The research focuses on zero-carbon hydrogen and other low-carbon fuels as viable alternatives to diesel for the rail industry.

Nearly $500 million in Inflation Reduction Act funding will support several key science projects underway at ORNL. Credit: ORNL/U.S. Dept. of Energy

Several significant science and energy projects led by the ORNL will receive a total of $497 million in funding from the Inflation Reduction Act.

This image from Sept. 30, 2022, shows how the Federal Emergency Management Agency used ORNL's USA Structures data along with new satellite images to identify structures that were destroyed in Lee County, Florida, during Hurricane Ian. Credit: ORNL, U.S. Dept. of Energy

Over the past seven years, researchers in ORNL’s Geospatial Science and Human Security Division have mapped and characterized all structures within the United States and its territories to aid FEMA in its response to disasters. This dataset provides a consistent, nationwide accounting of the buildings where people reside and work.

Sheng Dai

Sheng Dai, a Corporate Fellow and section head at the Department of Energy’s Oak Ridge National Laboratory, has been selected by the DOE Office of Science as a 2023 Distinguished Scientist Fellow.