Skip to main content
An ORNL research team has incorporated important effects from microbially-active hot spots near streams into models that track the movement of nutrients and contaminants in river networks. The integrated model better tracks water quality indicators and facilitates new science. Credit: Adam Malin/ORNL, U.S. Dept. of Energy

A new modeling capability developed at Oak Ridge National Laboratory incorporates important biogeochemical processes happening in river corridors for a clearer understanding of how water quality will be impacted by climate change, land use and

ORNL researchers used neutrons at the lab’s Spallation Neutron Source to analyze modified high-entropy metal alloys with enhanced strength and ductility, or the ability to stretch, under high-stress without failing. Credit: Rui Feng/ORNL, U.S. Dept. of Energy
Researchers at Oak Ridge National Laboratory have developed a method of adding nanostructures to high-entropy metal alloys, or HEAs, that enhance both strength and ductility, which is the ability to deform or stretch
An open-source code developed by an ORNL-led team could provide new insights into the everyday operation of the nation’s power grid. Credit: Pixabay

Oak Ridge National Laboratory, University of Tennessee and University of Central Florida researchers released a new high-performance computing code designed to more efficiently examine power systems and identify electrical grid disruptions, such as power outages.

ORNL researchers produced self-healable and highly adhesive elastomers, proving they self-repair in ambient conditions and underwater. This project garnered a 2021 R&D 100 Award. Credit: ORNL, U.S. Dept. of Energy

Research teams from the Department of Energy’s Oak Ridge National Laboratory and their technologies have received seven 2021 R&D 100 Awards, plus special recognition for a COVID-19-related project.

Larry Baylor, left, and Andrew Lupini have been elected fellows of the American Physical Society. Credit: ORNL, U.S. Dept. of Energy

ORNL's Larry Baylor and Andrew Lupini have been elected fellows of the American Physical Society.

Matthew Ryder is researching next-generation materials using neutron scattering as a Clifford G. Shull Fellow at Oak Ridge National Laboratory’s Neutron Sciences Directorate. (Image credit: ORNL/Genevieve Martin)

Matthew Ryder has been named an emerging investigator by the American Chemical Society journal Crystal Growth and Design. The ACS recognized him as “one of an emerging generation of research group leaders for his work on porous materials design.”

The first central solenoid module arrived at the ITER site in St. Paul-lez-Durance, France on Sept. 9. Credit: ITER Organization

Staff at Oak Ridge National Laboratory organized transport for a powerful component that is critical to the world’s largest experiment, the international ITER project.

Researchers from ORNL’s Vehicle and Autonomy Research Group created a control strategy for a hybrid electric bus that demonstrated up to 30% energy savings. Credit: University of California, Riverside

Oak Ridge National Laboratory researchers developed and demonstrated algorithm-based controls for a hybrid electric bus that yielded up to 30% energy savings compared with existing controls.

Compression (red arrows) alters crystal symmetry (green arrows), which changes band dispersion (left and right), leading to highly mobile electrons. Credit: Jaimee Janiga, Andrew Sproles, Satoshi Okamoto/ORNL, U.S. Dept. of Energy

A team led by the ORNL has found a rare quantum material in which electrons move in coordinated ways, essentially “dancing.”

Researchers gained new insights into the mechanisms some methane-feeding bacteria called methanotrophs (pictured) use to break down the toxin methylmercury. Credit: Andy Sproles/ORNL, U.S. Dept. of Energy; Jeremy Semrau/Univ. of Michigan

A team led by ORNL and the University of Michigan have discovered that certain bacteria can steal an essential compound from other microbes to break down methane and toxic methylmercury in the environment.