Skip to main content
Vittorio Badalassi, left, of Oak Ridge National Laboratory leads the Fusion Energy Reactor Models Integrator, or FERMI, project, and collaborates with ORNL computational physicist David Green. FERMI applies fission platforms to fusion reactor design. Credit: Commonwealth Fusion Systems and Colby Earles/ORNL, U.S. Dept. of Energy

Oak Ridge National Laboratory expertise in fission and fusion has come together to form a new collaboration, the Fusion Energy Reactor Models Integrator, or FERMI

Brenda Smith, shown here working with a gas viscometer in her research lab, is one of several people concurrently researching the thermophysical properties of feedstock gas. Their research will support computational researchers who are designing processes to separate isotopes. Credit: Carlos Jones/ORNL, US Dept. of Energy

For years Brenda Smith found fulfillment working with nuclear batteries, a topic she’s been researching as a chemist at Oak Ridge National Laboratory.

ORNL’s Sergei Kalinin and Rama Vasudevan (foreground) use scanning probe microscopy to study bulk ferroelectricity and surface electrochemistry -- and generate a lot of data. Credit: Jason Richards/ORNL, U.S. Dept. of Energy

At the Department of Energy’s Oak Ridge National Laboratory, scientists use artificial intelligence, or AI, to accelerate the discovery and development of materials for energy and information technologies.

Nuclear engineer Nesrin Ozgan Cetiner led ORNL’s collaboration with AMS Corp. to test instrument and control sensors for the next generation of nuclear power reactor technology. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

Toward the goal of bringing the next generation of nuclear power reactor technology online this decade, ORNL and Analysis and Measurement Services Corporation have successfully completed loop testing of instrument and control sensors for an advanced reactor design for small modular reactors.

Technicians John Dyer and T. Dyer use a manipulator arm in a shielded cave in ORNL’s Radiochemical Engineering Development Center to separate concentrated Pm-147 from byproducts generated through the production of Pu-238.

A new method developed at Oak Ridge National Laboratory proves one effort’s trash is another’s valuable isotope. One of the byproducts of the lab’s national plutonium-238 production program is promethium-147, a rare isotope used in nuclear batteries and to measure the thickness of materials.

Researchers at ORNL and the University of Tennessee developed an automated workflow that combines chemical robotics and machine learning to speed the search for stable perovskites. Credit: Jaimee Janiga/ORNL, U.S. Dept of Energy

Researchers at the Department of Energy’s Oak Ridge National Laboratory and the University of Tennessee are automating the search for new materials to advance solar energy technologies.

The Perseverance rover

On Feb. 18, the world will be watching as NASA’s Perseverance rover makes its final descent into Jezero Crater on the surface of Mars. Mars 2020 is the first NASA mission that uses plutonium-238 produced at the Department of Energy’s Oak Ridge National Laboratory.

Oscar Martinez loads a special form capsule into the leak tester for a helium leak test in the packaging facility of the National Transportation Research Center. Credit: Jason Richards/ORNL, U.S. Dept. of Energy

As program manager for the Department of Energy’s Oak Ridge National Laboratory’s Package Testing Program, Oscar Martinez enjoys finding and fixing technical issues.

The Transforming Additive Manufacturing through Exascale Simulation project (ExaAM) is building a new multi-physics modeling and simulation platform for 3D printing of metals

Oak Ridge National Laboratory experts are playing leading roles in the recently established Department of Energy’s (DOE’s) Exascale Computing Project (ECP), a multi-lab initiative responsible for developing the strategy, aligning the resources, and conducting the R&D necessary to achieve the nation’s imperative of delivering exascale computing by 2021.