Skip to main content
When an electron beam drills holes in heated graphene, single-atom vacancies, shown in purple, diffuse until they join with other vacancies to form stationary structures and chains, shown in blue. Credit: Ondrej Dyck/ORNL, U.S. Dept. of Energy

Oak Ridge National Laboratory researchers serendipitously discovered when they automated the beam of an electron microscope to precisely drill holes in the atomically thin lattice of graphene, the drilled holes closed up.

Jack Cahill of ORNL’s Biosciences Division is developing new techniques to view and measure the previously unseen to better understand important chemical processes at play in plant-microbe interactions and in human health. In this photo, Cahill is positioning a rhizosphere-on-a-chip platform for imaging by mass spectrometry. Credit: Carlos Jones/ORNL, U.S. Dept of Energy

John “Jack” Cahill is out to illuminate previously unseen processes with new technology, advancing our understanding of how chemicals interact to influence complex systems whether it’s in the human body or in the world beneath our feet.

ORNL researchers led by Michael Garvin, left, and David Kainer discovered genetic mutations called structural variants and linked them to autism spectrum disorders, demonstrating an approach that could be used to develop better diagnostics and drug therapies. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

ORNL researchers discovered genetic mutations that underlie autism using a new approach that could lead to better diagnostics and drug therapies.

Researchers at ORNL designed a recyclable carbon fiber material to promote low-carbon manufacturing. Credit: Chad Malone/ORNL, U.S. Dept. of Energy

Oak Ridge National Laboratory scientists designed a recyclable polymer for carbon-fiber composites to enable circular manufacturing of parts that boost energy efficiency in automotive, wind power and aerospace applications.

A team of researchers used mathematics to predict which areas of the SARS-CoV-2 spike protein are most likely to mutate. Credit: Jill Hemman/ORNL, U.S. Dept. of Energy

Researchers from ORNL, the University of Tennessee at Chattanooga and Tuskegee University used mathematics to predict which areas of the SARS-CoV-2 spike protein are most likely to mutate.

The AI-driven HyperCT platform has three primary points of articulation that can rotate a sample in almost any direction, eliminating the need for human intervention and significantly reducing lengthy experiment times. Credit: Genevieve Martin, ORNL/U.S. Dept. of Energy

Oak Ridge National Laboratory researchers are developing a first-of-its-kind artificial intelligence device for neutron scattering called Hyperspectral Computed Tomography, or HyperCT.

Samarthya Bhagia examines a sample of a thermoplastic composite material additively manufactured using poplar wood and polylactic acid. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

Chemical and environmental engineer Samarthya Bhagia is focused on achieving carbon neutrality and a circular economy by designing new plant-based materials for a range of applications from energy storage devices and sensors to environmentally friendly bioplastics.

Oak Ridge National Laboratory researchers developed an invertible neural network, a type of artificial intelligence that mimics the human brain, to improve accuracy in climate-change models and predictions. Credit: Getty Images

Oak Ridge National Laboratory researchers developed an invertible neural network, a type of artificial intelligence that mimics the human brain, to improve accuracy in climate-change models and predictions.

Jennifer Morrell-Falvey leads the Molecular and Cellular Imaging group at ORNL, advancing new insights in several scientific areas, including the interactions between plants and microbes that influence ecosystem health and carbon cycling. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

Jennifer Morrell-Falvey’s interest in visualizing the science behind natural processes was what drew her to ORNL in what she expected to be a short stint some 18 years ago. 

Physicist Charles Havener uses the NASA end station at ORNL’s Multicharged Ion Research Facility to simulate the origin of X-ray emissions from space. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

Scientists are using Oak Ridge National Laboratory’s Multicharged Ion Research Facility to simulate the cosmic origin of X-ray emissions resulting when highly charged ions collide with neutral atoms and molecules, such as helium and gaseous hydrogen.