Skip to main content
Amy Elliott, ORNL’s group leader for robotics and intelligent systems, has been honored with the ASTM International Additive Manufacturing Young Professional Award for her early career research in materials science and STEM leadership. Credit: ORNL, U.S. Dept. of Energy

Amy Elliott, a group leader for robotics and intelligent systems at Oak Ridge National Laboratory, has received the 2021 ASTM International Additive Manufacturing Young Professional Award for her early career research contributions

A material’s spins, depicted as red spheres, are probed by scattered neutrons. Applying an entanglement witness, such as the QFI calculation pictured, causes the neutrons to form a kind of quantum gauge. This gauge allows the researchers to distinguish between classical and quantum spin fluctuations. Credit: Nathan Armistead/ORNL, U.S. Dept. of Energy

A team led by the U.S. Department of Energy’s Oak Ridge National Laboratory demonstrated the viability of a “quantum entanglement witness” capable of proving the presence of entanglement between magnetic particles, or spins, in a quantum material.

Carrie Eckert

Carrie Eckert applies her skills as a synthetic biologist at ORNL to turn microorganisms into tiny factories that produce a variety of valuable fuels, chemicals and materials for the growing bioeconomy.

Erdem Asa is leveraging his power electronics expertise to adapt ORNL’s wireless charging technology to unmanned aerial vehicles. Credit: Erdem Asa/ORNL, U.S. Dept. of Energy

Having co-developed the power electronics behind ORNL’s compact, high-level wireless power technology for automobiles, Erdem Asa is looking to the skies to apply the same breakthrough to aviation.

ORNL researchers used neutrons at the lab’s Spallation Neutron Source to analyze modified high-entropy metal alloys with enhanced strength and ductility, or the ability to stretch, under high-stress without failing. Credit: Rui Feng/ORNL, U.S. Dept. of Energy
Researchers at Oak Ridge National Laboratory have developed a method of adding nanostructures to high-entropy metal alloys, or HEAs, that enhance both strength and ductility, which is the ability to deform or stretch
Atmospheric Radiation Measurement Data Center in Crested Butte, Colorado.

New data hosted through the Atmospheric Radiation Measurement Data Center at Oak Ridge National Laboratory will help improve models that predict climate change effects on the water supply in the Colorado River Basin.

ORNL researchers produced self-healable and highly adhesive elastomers, proving they self-repair in ambient conditions and underwater. This project garnered a 2021 R&D 100 Award. Credit: ORNL, U.S. Dept. of Energy

Research teams from the Department of Energy’s Oak Ridge National Laboratory and their technologies have received seven 2021 R&D 100 Awards, plus special recognition for a COVID-19-related project.

Matthew Ryder is researching next-generation materials using neutron scattering as a Clifford G. Shull Fellow at Oak Ridge National Laboratory’s Neutron Sciences Directorate. (Image credit: ORNL/Genevieve Martin)

Matthew Ryder has been named an emerging investigator by the American Chemical Society journal Crystal Growth and Design. The ACS recognized him as “one of an emerging generation of research group leaders for his work on porous materials design.”

ORNL researchers developed a novel process for manufacturing extreme heat resistant carbon-carbon composites at a faster rate and produced fins or strakes made of the materials for testing on a U.S. Navy rocket launching with NASA. Credit: ORNL, Sandia/U.S. Dept. of Energy

Oak Ridge National Laboratory researchers have developed a novel process to manufacture extreme heat resistant carbon-carbon composites. The performance of these materials will be tested in a U.S. Navy rocket that NASA will launch this fall.

Researchers from ORNL’s Vehicle and Autonomy Research Group created a control strategy for a hybrid electric bus that demonstrated up to 30% energy savings. Credit: University of California, Riverside

Oak Ridge National Laboratory researchers developed and demonstrated algorithm-based controls for a hybrid electric bus that yielded up to 30% energy savings compared with existing controls.