Skip to main content
Joseph Lukens, Raphael Pooser, and Nick Peters (from left) of ORNL’s Quantum Information Science Group developed and tested a new interferometer made from highly nonlinear fiber in pursuit of improved sensitivity at the quantum scale. Credit: Carlos Jones

By analyzing a pattern formed by the intersection of two beams of light, researchers can capture elusive details regarding the behavior of mysterious phenomena such as gravitational waves. Creating and precisely measuring these interference patterns would not be possible without instruments called interferometers.

ORNL bioscience researcher Jerry Tuskan had an early interest in plant genetics.

It’s been 10 years since the Department of Energy first established a BioEnergy Science Center (BESC) at Oak Ridge National Laboratory, and researcher Gerald “Jerry” Tuskan has used that time and the lab’s and center’s resources and tools to make good on his college dreams of usi...

By wet-sieving stream sediment, (from left) Oak Ridge National Laboratory’s Kenneth Lowe, Melanie Mayes and John Dickson sort sediment into different particle size in this stream near Rocky Top.

An Oak Ridge National Laboratory study is providing an unprecedented watershed-scale understanding of mercury in soils and sediments. Researchers focused on evaluating mercury and soil properties along the banks of a mercury-contaminated stream in Oak Ridge, Tenn., sampling 145 loca...

Andrew King loads a gel with amplified gene fragments to detect the presence of mercury methylation genes in samples from East Fork Poplar Creek in Oak Ridge.

Environmental scientists can more efficiently detect genes required to convert mercury in the environment into more toxic methylmercury with molecular probes developed by researchers at the Department of Energy’s Oak Ridge National Laboratory. “We now have a quic...

ORNL Image

Researchers at the Department of Energy’s Oak Ridge National Laboratory are the first team to sequence the entire genome of the Clostridium autoethanogenum bacterium, which is used to sustainably produce fuel and chemicals from a range of raw materials, including gases derived from biomass and industrial wastes.