Skip to main content
An Oak Ridge National Laboratory-led research team used a sophisticated X-ray scattering technique to visualize and quantify the movement of water molecules in space and time, which provides new insights that may open pathways for liquid-based electronics
A novel approach to studying the viscosity of water has revealed new insights about the behavior of water molecules and may open pathways for liquid-based electronics.
Eugene Mamontov and the BASIS beam line at the Spallation Neutron Source at ORNL. Photo credit: Jason Richards, ORNL.
Eugene Mamontov’s background in both basic and applied science has made him a valued partner for scientists who come to the Spallation Neutron Source at ORNL in search of a better understanding of the water dynamics in their research—projects as diverse as studying plant cellulos...
Neutrons probed two mechanisms proposed to explain what happens when hydrogen gas flows over a cerium oxide (CeO2) catalyst that has been heated in an experimental chamber to different temperatures to change its oxidation state. The first mechanism sugges
Having the right tool for the job enabled scientists at the Department of Energy’s Oak Ridge National Laboratory and their collaborators to discover that a workhorse catalyst of vehicle exhaust systems—an “oxygen sponge” that can soak up oxygen from air and store it for later use in oxidation reactions—may also be a “hydrogen sponge.”
How perovskite catalysts are made and treated changes their surface compositions and ultimate product yields. If certain perovskite catalysts of the formula ABO3 are heat-treated, the catalyst’s surface terminates predominantly with A (a rare-earth metal

For some crystalline catalysts, what you see on the surface is not always what you get in the bulk, according to two studies led by the Department of Energy’s Oak Ridge National Laboratory. The investigators discovered that treating a complex 

ORNL’s Steven Dajnowicz (left) and Andrey Kovalevsky prepared a sample to begin neutron structural analysis of a vitamin B6-dependent protein using the IMAGINE beamline at ORNL’s High Flux Isotope Reactor. Results of the study could open avenues for new a
Scientists at the Department of Energy’s Oak Ridge National Laboratory have performed neutron structural analysis of a vitamin B6-dependent protein, potentially opening avenues for new antibiotics and drugs to battle diseases such as drug-resistant
Spin-polarized_4-probe_STM_ORNL_2.jpg
A new method that precisely measures the mysterious behavior and magnetic properties of electrons flowing across the surface of quantum materials could open a path to next-generation electronics. A team of scientists has developed an innovative microscopy technique to detect the spin of electrons in topological insulators, a new kind of quantum material that could be used in applications such as spintronics and quantum computing.
ORNL Image

For many scientists and engineers, the first real test of their mettle comes not in a classroom, but in a lab or the field, where hands-on experience can teach volumes. For Susan Hogle, that hands-on experience just happened to be with material that was too hot to handle—literally....

COHERENT collaborators were the first to observe coherent elastic neutrino–nucleus scattering. Their results, published in the journal Science, confirm a prediction of the Standard Model and establish constraints on alternative theoretical models. Image c

After more than a year of operation at the Department of Energy’s (DOE’s) Oak Ridge National Laboratory (ORNL), the COHERENT experiment, using the world’s smallest neutrino detector, has found a big fingerprint of the elusive, electrically neutral particles that interact only weakly with matter.

Used cooking oil can be converted into biofuel with carbon derived from recycled tires—a new method developed by an Oak Ridge National Laboratory-led research team.
Using a novel, reusable carbon material derived from old rubber tires, an Oak Ridge National Laboratory-led research team has developed a simple method to convert used cooking oil into biofuel.
A novel technique can help protect the innermost wall in a fusion reactor from the energy created when hydrogen isotopes are heated to temperatures hotter than the sun. Photo by General Atomics
Fusion scientists from Oak Ridge National Laboratory, as part of the DIII-D National Fusion Facility team at General Atomics, are studying an approach to insulate the reactor’s innermost wall that surrounds the burning plasma from the energy created when hydrogen isotopes are heated...