Skip to main content
ORNL researchers printed thin metal walls using large-scale metal additive manufacturing, a wire-arc process that demonstrated stability, uniformity and precise geometry throughout the deposition. The method could be a viable option for large-scale additive manufacturing of metal components. ORNL collaborated with industry partner Lincoln Electric. Credit: Oak Ridge National Laboratory, U.S. Dept. of Energy

A novel additive manufacturing method developed by researchers at Oak Ridge National Laboratory could be a promising alternative for low-cost, high-quality production of large-scale metal parts with less material waste.

Scott Smith holding machined aluminum part

When Scott Smith looks at a machine tool, he thinks not about what the powerful equipment used to shape metal can do – he’s imagining what it could do with the right added parts and strategies. As ORNL’s leader for a newly formed group, Machining and Machine Tool Research, Smith will have the opportunity to do just that.

Low-cost, compact, printed sensor that can collect and transmit data on electrical appliances for better load monitoring

Scientists at Oak Ridge National Laboratory have developed a low-cost, printed, flexible sensor that can wrap around power cables to precisely monitor electrical loads from household appliances to support grid operations.

 

Desalination diagram

A team of scientists led by Oak Ridge National Laboratory used carbon nanotubes to improve a desalination process that attracts and removes ionic compounds such as salt from water using charged electrodes.

Alex Roschli in front of BAAM

Alex Roschli is no stranger to finding himself in unique situations. After all, the early career researcher in ORNL’s Manufacturing Systems Research group bears a last name that only 29 other people share in the United States, and he’s certain he’s the only Roschli (a moniker that hails from Switzerland) with the first name Alex.

The concrete parts are installed in a residential and commercial tower (above center and below) on the site of the Domino Sugar Factory along the waterfront in Brooklyn. Windows in the tower resemble sugar crystals. Image credit: Gate Precast

A residential and commercial tower under development in Brooklyn that is changing the New York City skyline has its roots in research at the Department of Energy’s Oak Ridge National Laboratory.

Trees in an Oak Ridge National Laboratory plot

Higher carbon dioxide levels caused 30 percent more wood growth in young forest stands across the temperate United States over a decade, according to an analysis led by Oak Ridge National Laboratory.

carbon nanospikes

OAK RIDGE, Tenn., March 1, 2019—ReactWell, LLC, has licensed a novel waste-to-fuel technology from the Department of Energy’s Oak Ridge National Laboratory to improve energy conversion methods for cleaner, more efficient oil and gas, chemical and

ORNL will use state-of-the-art R&D tools at the Battery Manufacturing Facility to develop new methods for separating and reclaiming valuable materials from spent EV batteries.

The use of lithium-ion batteries has surged in recent years, starting with electronics and expanding into many applications, including the growing electric and hybrid vehicle industry. But the technologies to optimize recycling of these batteries have not kept pace.