Skip to main content
Professors Zhenzhen Yu (left) and Michael Joachim Andreassen use neutrons at HFIR’s NRSF2 to investigate residual stresses expected to occur in the welds of offshore underwater wind turbine foundations. (Credit: ORNL/Genevieve Martin)
Massive offshore structures like oil rigs and wind turbines are designed to withstand the myriad punishments oceans tend to mete out. However, over time, just the saltwater itself can significantly decrease the durability of a structure’s welds. That’s why professors Michael Jo...
ORNL Image

Inspired by her computer science studies and the possibilities of 3D-printing, intern Elizabeth Yeoh-Wang found a way to combine those pursuits as she worked on a software project at the Manufacturing Demonstration Facility (MDF) at Oak Ridge National Laboratory (ORNL) last summer. Elizabeth, a r...

ORNL’s Pavel Lougovski (left) and Raphael Pooser will lead research teams working to advance quantum computing for scientific applications.
By harnessing the power of quantum mechanics, researchers hope to create quantum computers capable of simulating phenomenon at a scale and speed unthinkable on traditional architectures, an effort of great interest to agencies such as the Department of Energy tasked with tackling some of the world’s most complex science problems.
How perovskite catalysts are made and treated changes their surface compositions and ultimate product yields. If certain perovskite catalysts of the formula ABO3 are heat-treated, the catalyst’s surface terminates predominantly with A (a rare-earth metal

For some crystalline catalysts, what you see on the surface is not always what you get in the bulk, according to two studies led by the Department of Energy’s Oak Ridge National Laboratory. The investigators discovered that treating a complex 

ORNL Image

Interdisciplinary work has been a hallmark of Julie Mitchell’s career, and it is a strength she expects to leverage in helping solve some big science challenges as she steps into the role of Deputy Director of the Biosciences Division at Oak Ridge National Laboratory (ORNL). Mitchell will support...

ORNL’s Steven Dajnowicz (left) and Andrey Kovalevsky prepared a sample to begin neutron structural analysis of a vitamin B6-dependent protein using the IMAGINE beamline at ORNL’s High Flux Isotope Reactor. Results of the study could open avenues for new a
Scientists at the Department of Energy’s Oak Ridge National Laboratory have performed neutron structural analysis of a vitamin B6-dependent protein, potentially opening avenues for new antibiotics and drugs to battle diseases such as drug-resistant
The interior of the Massachusetts Institute of Technology’s (MIT’s) Alcator C-Mod tokamak. A team led by Princeton Plasma Physics Laboratory’s C.S. Chang recently used the Titan supercomputer

The same fusion reactions that power the sun also occur inside a tokamak, a device that uses magnetic fields to confine and control plasmas of 100-plus million degrees. Under extreme temperatures and pressure, hydrogen atoms can fuse together, creating new helium atoms and simulta...

Michelle Buchanan, deputy for science and technology at Oak Ridge National Laboratory, and Robert Moseley and Ben Mohr of SimPath signed an agreement for SimPath to license a novel ORNL cloning system that assembles the biological building blocks necessar

SimPath has licensed a novel cloning system developed by the Department of Energy’s Oak Ridge National Laboratory that generates and assembles the biological building blocks necessary to synthetically bioengineer new medicines and fuels. Knoxville, Tennessee-based ...

Spin-polarized_4-probe_STM_ORNL_2.jpg
A new method that precisely measures the mysterious behavior and magnetic properties of electrons flowing across the surface of quantum materials could open a path to next-generation electronics. A team of scientists has developed an innovative microscopy technique to detect the spin of electrons in topological insulators, a new kind of quantum material that could be used in applications such as spintronics and quantum computing.
An image of a complete 7HA.02 gas turbine. The new GE turbine is capable of achieving an overall efficiency of more than 62 percent in a combined-cycle power plant and is projected to exceed world-record efficiency marks set by GE’s 9HA turbine model.
In 2017, US-based General Electric (GE) delivered its newest heavy-duty gas turbine, the 7HA.02, to two power plants in Texas. The installations marked a milestone in natural gas–derived electricity generation, setting new marks in efficiency and emissions for utility-scale turboma...