Skip to main content
ORNL’s biosensor system reveals CRISPR activity in poplar plants, which glow bright green under ultraviolet light, compared to normal plants, which appear red. Credit: Guoliang Yuan/ORNL, U.S. Dept. of Energy

Detecting the activity of CRISPR gene editing tools in organisms with the naked eye and an ultraviolet flashlight is now possible using technology developed at ORNL. 

A material’s spins, depicted as red spheres, are probed by scattered neutrons. Applying an entanglement witness, such as the QFI calculation pictured, causes the neutrons to form a kind of quantum gauge. This gauge allows the researchers to distinguish between classical and quantum spin fluctuations. Credit: Nathan Armistead/ORNL, U.S. Dept. of Energy

A team led by the U.S. Department of Energy’s Oak Ridge National Laboratory demonstrated the viability of a “quantum entanglement witness” capable of proving the presence of entanglement between magnetic particles, or spins, in a quantum material.

Carrie Eckert

Carrie Eckert applies her skills as a synthetic biologist at ORNL to turn microorganisms into tiny factories that produce a variety of valuable fuels, chemicals and materials for the growing bioeconomy.

Oak Ridge National Laboratory entrance sign

A team from ORNL, Stanford University and Purdue University developed and demonstrated a novel, fully functional quantum local area network, or QLAN, to enable real-time adjustments to information shared with geographically isolated systems at ORNL

ORNL metabolic engineer Adam Guss develops genetic tools to modify microbes that can perform a range of processes needed to create sustainable biofuels and bioproducts. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

As a metabolic engineer at Oak Ridge National Laboratory, Adam Guss modifies microbes to perform the diverse processes needed to make sustainable biofuels and bioproducts.

ORNL’s Josh Michener, a microbiologist and metabolic engineer, led the discovery of a useful new enzyme that breaks down stubborn bonds in lignin, a polymer found in plants that typically becomes waste during bioconversion. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

In a step toward increasing the cost-effectiveness of renewable biofuels and bioproducts, scientists at ORNL discovered a microbial enzyme that degrades tough-to-break bonds in lignin, a waste product of biorefineries.

Scientists genetically engineered bacteria for itaconic acid production, creating dynamic controls that separate microbial growth and production phases for increased efficiency and acid yield. Credit: NREL

A research team led by Oak Ridge National Laboratory bioengineered a microbe to efficiently turn waste into itaconic acid, an industrial chemical used in plastics and paints.

ORNL has modeled the spike protein that binds the novel coronavirus to a human cell for better understanding of the dynamics of COVID-19. Credit: Stephan Irle/ORNL, U.S. Dept. of Energy

To better understand the spread of SARS-CoV-2, the virus that causes COVID-19, Oak Ridge National Laboratory researchers have harnessed the power of supercomputers to accurately model the spike protein that binds the novel coronavirus to a human cell receptor.

 The researchers embedded a programmable model into a D-Wave quantum computer chip. Credit: D-Wave

A multi-institutional team became the first to generate accurate results from materials science simulations on a quantum computer that can be verified with neutron scattering experiments and other practical techniques.

Researchers Adam Guss and Melissa Tumen-Velasquez work with microbes to understand how the organisms consume plastics and break them into chemical components that can be used to make higher-value products.

From soda bottles to car bumpers to piping, electronics, and packaging, plastics have become a ubiquitous part of our lives.